Abstract
Concerns about the effect on the environment and non-renewable nature of plastics have sparked a substantial field of study towards the creation of recyclable polymers. Vitrimers are a potential class of reusable polymers that have recently attracted a lot of interest. Like conventional thermosets in strength, durability, and chemical resistance, these materials offer the added benefit of being recyclable at the end of their useful life. Their chemical structure, which includes dynamic covalent crosslinks to provide stability while enabling reprocessing, is credited with this special characteristic. We lay out an overview of recent developments and their applications in epoxy based vitrimeric materials by using the different types of covalent adaptable networks (CANs) – single, dual and triple in this paper with a lot of attention on design tactics that make it easier to create circular materials of the future. Covalent Adaptable Networks (CAN), a novel polymer family that can bridge the gap between thermosets and thermoplastics, emerged in the recent years and uses dynamic covalent chemistry to crosslinked polymer networks. The field was enhanced in 2011 by Leibler and colleagues when they introduced the notion of vitrimers, which are crosslinked polymers that retain the integrity of their network even after heating and allow the covalent connections to be reallocated within them by associative exchange reactions. This review also demonstrates how the vitrimer community is paying attention to the need for sustainable material development by demonstrating the use of biobased building blocks in the synthesis of novel and high-performing vitrimers. Having outlined the primary characteristics of vitrimers, commercialization and development of vitrimers for different applications is emphasized to portray their benefits for self-healing, malleability, orthogonal processability, and various shape memories along with sustainable solutions to synthetic materials.
Acknowledgments
Prof. Suryasarathi Bose would like to acknowledge DST-SERB for Swarnajayanti fellowship. Dr. Neetika Singh wishes to acknowledge the SERB-National Postdoctoral Fellowship (NPDF) (FileNo: PDF/2022/000556), DST, India for providing funding support to conduct this research.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: DST-SERB for Swarnajayanti fellowship. Dr. Neetika Singh wishes to acknowledge the SERB-National Postdoctoral Fellowship (NPDF) (FileNo: PDF/2022/000556), DST, India for providing funding support to conduct this research.
-
Data availability: Not applicable.
References
Abdulla, R.F., Emmick, T.L., and Taylor, H.M. (1977). A new synthetic approach to 4(1H)-pyridone derivatives. I. 1-alkyl-3,5-diaryl-4(1H)-pyridones. Synth. Commun. 7: 305–312, https://doi.org/10.1080/00397917708050752.Search in Google Scholar
Adjaoud, A., Puchot, L., and Verge, P. (2022). High-tg and degradable isosorbide-based polybenzoxazine vitrimer. ACS Sustain. Chem. Eng. 10: 594–602, https://doi.org/10.1021/acssuschemeng.1c07093.Search in Google Scholar
Alfarhan, S., Brown, J., Liu, B., Long, T., and Jin, K. (2022). Chemically recyclable crosslinked thiol-ene photopolymers via thiol-disulfide exchange reactions. J. Polym. Sci. 60: 3379–3390, https://doi.org/10.1002/pol.20220131.Search in Google Scholar
Amamoto, Y., Kamada, J., Otsuka, H., Takahara, A., and Matyjaszewski, K. (2011). Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. 50: 1660–1663, https://doi.org/10.1002/anie.201003888.Search in Google Scholar PubMed
Azcune, I., Huegun, A., Ruiz de Luzuriaga, A., Saiz, E., and Rekondo, A. (2021). The effect of matrix on shape properties of aromatic disulfide based epoxy vitrimers. Eur. Polym. J. 148: 110362, https://doi.org/10.1016/j.eurpolymj.2021.110362.Search in Google Scholar
Bakkali-Hassani, C., Berne, D., Ladmiral, V., and Caillol, S. (2022). Transcarbamoylation in polyurethanes: underestimated exchange reactions? Macromolecules 55: 7974–7991, https://doi.org/10.1021/acs.macromol.2c01184.Search in Google Scholar
Belowich, M.E. and Stoddart, J.F. (2012). Dynamic imine chemistry. Chem. Soc. Rev. 41: 2003–2024, https://doi.org/10.1039/C2CS15305J.Search in Google Scholar PubMed
Bergoglio, M., Reisinger, D., Schlögl, S., Griesser, T., and Sangermano, M. (2023). Sustainable bio-based UV-cured epoxy vitrimer from castor oil. Polymers 15, https://doi.org/10.3390/polym15041024.Search in Google Scholar PubMed PubMed Central
Bhusal, S., Oh, C., Kang, Y., Varshney, V., Ren, Y., Nepal, D., Roy, A., and Kedziora, G. (2021). Transesterification in vitrimer polymers using bifunctional catalysts: modeled with solution-phase experimental rates and theoretical analysis of efficiency and mechanisms. J. Phys. Chem. B 125: 2411–2424, https://doi.org/10.1021/acs.jpcb.0c10403.Search in Google Scholar PubMed
Billiet, S., De Bruycker, K., Driessen, F., Goossens, H., Van Speybroeck, V., Winne, J.M., and Du Prez, F.E. (2014). Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nat. Chem. 6: 815–821, https://doi.org/10.1038/nchem.2023.Search in Google Scholar PubMed
Blaiszik, B.J., Sottos, N., and White, S. (2008). Nanocapsules for self-healing materials. Compos. Sci. Technol. 68: 978–986, https://doi.org/10.1016/j.compscitech.2007.07.021.Search in Google Scholar
Blaiszik, B., Kramer, S., Olugebefola, S., Moore, J., Sottos, N., and White, S. (2010). Self-healing polymers and composites. Annu. Rev. Mater. Res. 40: 179–211211, https://doi.org/10.1146/annurev-matsci-070909-104532.Search in Google Scholar
Bracher, P.J., Snyder, P.W., Bohall, B.R., and Whitesides, G.M. (2011). The relative rates of thiol–thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Origins Life Evol. Biospheres 41: 399–412, https://doi.org/10.1007/s11084-011-9243-4.Search in Google Scholar PubMed
Breuillac, Antoine, Caffy, F., Vialon, T., and Nicolaÿ, R. (2020). Functionalization of polyisoprene and polystyrene via reactive processing using azidoformate grafting agents, and its application to the synthesis of dioxaborolane-based polyisoprene vitrimers. Polym. Chem. 11: 6479–6491, https://doi.org/10.1039/D0PY00164C.Search in Google Scholar
Buchwalter, S.L. (2001). Semiconductor chip underfill materials I’m Encyclopaedia of Materials: Science and Technology. In: Jürgen Buschow, K.H. (Ed.). Semiconductor chip underfill materials. Elsevier, Amsterdam, pp. 8332–8335.10.1016/B0-08-043152-6/01492-3Search in Google Scholar
Builes Cárdenas, C., Gayraud, V., Rodriguez, M.E., Costa, J., Salaberria, A.M., Ruiz de Luzuriaga, A., Markaide, N., Dasan Keeryadath, P., and Calderón Zapatería, D. (2022). Study into the mechanical properties of a new aeronautic-grade epoxy-based carbon-fiber-reinforced vitrimer. Polymers 14, https://doi.org/10.3390/polym14061223.Search in Google Scholar PubMed PubMed Central
Butt, F.I., Muhammad, N., Hamid, A., Moniruzzaman, M., and Sharif, F. (2018). Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications – review. Int. J. Biol. Macromol. 120: 1294–1305, https://doi.org/10.1016/j.ijbiomac.2018.09.002.Search in Google Scholar PubMed
Cai, W., Huang, Y., Li, J., Yang, G., Wang, F., Si, G., and Tan, C. (2023). A multifunctional biomass zinc catalyst for epoxy-based vitrimers and composites. Eur. Polym. J. 188: 111936, https://doi.org/10.1016/j.eurpolymj.2023.111936.Search in Google Scholar
Capelot, M., Montarnal, D., Tournilhac, F., and Leibler, L. (2012). Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134: 7664–7667.10.1021/ja302894kSearch in Google Scholar PubMed
Celik, G., Kennedy, R.M., Hackler, R.A., Ferrandon, M., Tennakoon, A., Patnaik, S., LaPointe, A.M., Ammal, S.C., Heyden, A., Perras, F.A., et al.. (2019). Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5: 1795–1803, https://doi.org/10.1021/acscentsci.9b00722.Search in Google Scholar PubMed PubMed Central
Chabert, E., Vial, J., Cauchois, J.P., Mihaluta, M., and Tournilhac, F. (2016). Multiple welding of long fiber epoxy vitrimer composites. Soft Matter 12: 4838–4845, https://doi.org/10.1039/C6SM00257A.Search in Google Scholar PubMed
Chakma, P., Digby, Z.A., Shulman, M.P., Kuhn, L.R., Morley, C.N., Sparks, J.L., and Konkolewicz, D. (2019). Anilinium salts in polymer networks for materials with mechanical stability and mild thermally induced dynamic properties. ACS Macro Lett. 8: 95–100, https://doi.org/10.1021/acsmacrolett.8b00819.Search in Google Scholar PubMed
Chakma, P., Morley, C.N., Sparks, J.L., and Konkolewicz, D. (2020). Exploring how vitrimer-like properties can Be achieved from dissociative exchange in anilinium salts. Macromolecules 53: 1233–1244, https://doi.org/10.1021/acs.macromol.0c00120.Search in Google Scholar
Chen, M., Lin, Z., Wu, Y., Zhao, X., and Zhang, Y. (2019). Rapid stress relaxation and moderate temperature of malleability enabled by the synergy of disulfide metathesis and carboxylate transesterification in epoxy vitrimers. ACS Macro Lett. 8: 255–260, https://doi.org/10.1021/acsmacrolett.9b00015.Search in Google Scholar PubMed
Chen, F., Gao, F., Zhong, J., Shen, L., and Lin, Y. (2020). Fusion of biobased vinylogous urethane vitrimers with distinct mechanical properties. Mater. Chem. Front. 4: 2723–2730, https://doi.org/10.1039/D0QM00302F.Search in Google Scholar
Chen, Q., Yang, Y., Yu, Y., and Xu, H. (2021). Reprocessable thermosets’: synthesis and characterization of vitrimer in the undergraduate lab course. J. Chem. Educ. 98: 1429–1435, https://doi.org/10.1021/acs.jchemed.0c01289.Search in Google Scholar
Cho, B. and Wong, M.W. (2015). Unconventional bifunctional lewis-brønsted acid activation mode in bicyclic guanidine-catalyzed conjugate addition reactions. Molecules 20: 15108–15121, https://doi.org/10.3390/molecules200815108.Search in Google Scholar PubMed PubMed Central
Chong, K.L., Lai, J., Rahman, R., Adrus, N., Al-Saffar, Z., Hassan, A., Lim, T., and Wahit, M. (2022). A review on recent approaches to sustainable bio-based epoxy vitrimer from epoxidized vegetable oils. Ind. Crops Prod. 189: 115857, https://doi.org/10.1016/j.indcrop.2022.115857.Search in Google Scholar
Christensen, P.R., Scheuermann, A.M., Loeffler, K.E., and Helms, B.A. (2019). Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds. Nat. Chem. 11: 442–448, https://doi.org/10.1038/s41557-019-0249-2.Search in Google Scholar PubMed
Dailing, E., Khanal, P., Epstein, A., Demarteau, J., Persson, K., and Helms, B. (2023). Uncoupling short-range bond exchange from long-range viscoelastic flow. In: Circular polydiketoenamine elastomers. ChemRxiv (Preprint service).10.26434/chemrxiv-2023-8qnflSearch in Google Scholar
Debsharma, T., Amfilochiou, V., Wróblewska, A.A., De Baere, I., Van Paepegem, W., and Du Prez, F.E. (2022). Fast dynamic siloxane exchange mechanism for reshapable vitrimer composites. J. Am. Chem. Soc. 144: 12280–12289, https://doi.org/10.1021/jacs.2c03518.Search in Google Scholar PubMed
Delpierre, S., Willocq, B., Manini, G., Lemaur, V., Goole, J., Gerbaux, P., Cornil, J., Dubois, P., and Raquez, J.M. (2019). Simple approach for a self-healable and stiff polymer network from iminoboronate-based boroxine chemistry. Chem. Mater. 31: 3736–3744, https://doi.org/10.1021/acs.chemmater.9b00750.Search in Google Scholar
Demongeot, A., Mougnier, S.J., Okada, S., Soulié-Ziakovic, C., and Tournilhac, F. (2016). Coordination and catalysis of Zn2+ in epoxy-based vitrimers. Polym. Chem. 7: 4486–4493, https://doi.org/10.1039/C6PY00752J.Search in Google Scholar
Denissen, W., Rivero, G., Nicolaÿ, R., Leibler, L., Winne, J.M., and Du Prez, F.E. (2015). Vinylogous urethane vitrimers. Adv. Funct. Mater. 25: 2451–2457, https://doi.org/10.1002/adfm.201404553.Search in Google Scholar
Denissen, W., Winne, J.M., and Du Prez, F.E. (2016). Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7: 30–38, https://doi.org/10.1039/C5SC02223A.Search in Google Scholar PubMed PubMed Central
di Mauro, Chiara, Tran, T.N., Graillot, A., and Mija, A. (2020). Enhancing the recyclability of a vegetable oil-based epoxy thermoset through initiator influence. ACS Sustain. Chem. Eng. 8: 7690–7700, https://doi.org/10.1021/acssuschemeng.0c01419.Search in Google Scholar
Du, L., Jin, X., Qian, G., Yang, W., Su, L., Ma, Y., Ren, S., and Li, S. (2022). Lignin-based vitrimer for circulation in plastics, coatings, and adhesives with tough mechanical properties, catalyst-free and good chemical solvent resistance. Ind. Crops Prod. 187: 115439, https://doi.org/10.1016/j.indcrop.2022.115439.Search in Google Scholar
Dugas, L.D., Walker, W.D., Shankar, R., Hoppmeyer, K.S., Thornell, T.L., Morgan, S.E., Storey, R.F., Patton, D.L., and Simon, Y.C. (2022). Diketoenamine-based vitrimers via thiol-ene photopolymerization. Macromol. Rapid Commun. 43: e2200249, https://doi.org/10.1002/marc.202200249.Search in Google Scholar PubMed
Elling, B.R. and Dichtel, W.R. (2020). Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Cent. Sci. 6: 1488–1496, https://doi.org/10.1021/acscentsci.0c00567.Search in Google Scholar PubMed PubMed Central
Fan, M., Liu, J., Li, X., Zhang, J., and Cheng, J. (2014). Recyclable diels–alder furan/maleimide polymer networks with shape memory effect. Ind. Eng. Chem. Res. 53: 16156–16163, https://doi.org/10.1021/ie5028183.Search in Google Scholar
Fang, H., Ye, W., Yang, K., Song, K., Wei, H., and Ding, Y. (2021). Vitrimer chemistry enables epoxy nanocomposites with mechanical robustness and integrated conductive segregated structure for high performance electromagnetic interference shielding. Composites, Part B 215: 108782, https://doi.org/10.1016/j.compositesb.2021.108782.Search in Google Scholar
Fava, A., Reichenbach, G., and Peron, U. (1967). Kinetics of the thiol-disulfide exchange. II. Oxygen-promoted free-radical exchange between aromatic thiols and disulfides. J. Am. Chem. Soc. 89: 6696–6700, https://doi.org/10.1021/ja01001a052.Search in Google Scholar
Feng, Z., Yu, B., Hu, J., Zuo, H., Li, J., Sun, H., Ning, N., Tian, M., and Zhang, L. (2019). Multifunctional vitrimer-like polydimethylsiloxane (PDMS): recyclable, self-healable, and water-driven malleable covalent networks based on dynamic imine bond. Ind. Eng. Chem. Res. 58: 1212–1221, https://doi.org/10.1021/acs.iecr.8b05309.Search in Google Scholar
Fernandes, P.A. and Ramos, M.J. (2004). Theoretical insights into the mechanism for thiol/disulfide exchange. Chemistry 10: 257–266, https://doi.org/10.1002/chem.200305343.Search in Google Scholar PubMed
Fortman, D.J., Brutman, J.P., Cramer, C.J., Hillmyer, M.A., and Dichtel, W.R. (2015). Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 137: 14019–14022, https://doi.org/10.1021/jacs.5b08084.Search in Google Scholar PubMed
Fortunatti, C., Sarmoria, C., Brandolin, A., and Asteasuain, M. (2013). Kraslawski, A. and Ilkka, B.T. (Eds.). 23 European Symposium on computer aided process engineering, Computer Aided Chemical Engineering Turunen, 32. Elsevier, Amsterdam, pp. 859–864.10.1016/B978-0-444-63234-0.50144-5Search in Google Scholar
Geyer, R., Jambeck, J.R., and Law, K.L. (2017). Production, use, and fate of all plastics ever made. Sci. Adv. 3: e1700782, https://doi.org/10.1126/sciadv.1700782.Search in Google Scholar PubMed PubMed Central
Ginjupalli, K., Shavi, G.V., Averineni, R.K., Bhat, M., Udupa, N., and Nagaraja Upadhya, P. (2017). Poly(α-hydroxy acid) based polymers: a review on material and degradation aspects. Polym. Degrad. Stab. 144: 520–535, https://doi.org/10.1016/j.polymdegradstab.2017.08.024.Search in Google Scholar
Greig, L.M. and Philp, D. (2001). Applying biological principles to the assembly and selection of synthetic superstructures. Chem. Soc. Rev. 30: 287–302, https://doi.org/10.1039/B104962N.Search in Google Scholar
Guerre, M., Taplan, C., Winne, J.M., and Du Prez, F.E. (2020). Vitrimers: directing chemical reactivity to control material properties. Chem. Sci. 11: 4855–4870, https://doi.org/10.1039/D0SC01069C.Search in Google Scholar
Guggari, S., Magliozzi, F., Malburet, S., Graillot, A., Destarac, M., and Guerre, M. (2023). Vanillin-based epoxy vitrimers: looking at the cystamine hardener from a different perspective. ACS Sustain. Chem. Eng. 11: 6021–6031, https://doi.org/10.1021/acssuschemeng.3c00379.Search in Google Scholar PubMed PubMed Central
Guggari, S., Magliozzi, F., Malburet, S., Graillot, A., Destarac, M., and Guerre, M. (2024). Vanillin-based dual dynamic epoxy building block: a promising accelerator for disulfide vitrimers. Polym. Chem. 15: 1347–1357, https://doi.org/10.1039/D4PY00038B.Search in Google Scholar
Hajiali, F., Tajbakhsh, S., and Marić, M. (2021). Thermally reprocessable bio-based polymethacrylate vitrimers and nanocomposites. Polymer 212: 123126, https://doi.org/10.1016/j.polymer.2020.123126.Search in Google Scholar
Hammer, L., Van Zee, N.J., and Nicolaÿ, R. (2021). Dually crosslinked polymer networks incorporating dynamic covalent bonds. Polymers 13, https://doi.org/10.3390/polym13030396.Search in Google Scholar PubMed PubMed Central
Hayashi, M. (2020). Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept. Polymers 12, https://doi.org/10.3390/polym12061322.Search in Google Scholar PubMed PubMed Central
Hayashi, M. and Chen, L. (2020). Functionalization of triblock copolymer elastomers by cross-linking the end blocks via trans-N-alkylation-based exchangeable bonds. Polym. Chem. 11: 1713–1719, https://doi.org/10.1039/C9PY01759C.Search in Google Scholar
Hayashi, M., Oba, Y., Kimura, T., and Takasu, A. (2021). Simple preparation, properties, and functions of vitrimer-like polyacrylate elastomers using trans-N-alkylation bond exchange. Polym. J. 53: 1–6, https://doi.org/10.1038/s41428-021-00472-4.Search in Google Scholar
He, X., Lei, Z., Zhang, W., and Yu, K. (2019). Recyclable 3D printing of polyimine-based covalent adaptable network polymers. 3D Printing and Additive Manufacturing 6: 31–39, https://doi.org/10.1089/3dp.2018.0115.Search in Google Scholar
He, C., Christensen, P.R., Seguin, T.J., Dailing, E.A., Wood, B.M., Walde, R.K., Persson, K.A., Russell, T.P., and Helms, B.A. (2020). Conformational entropy as a means to control the behavior of poly(diketoenamine) vitrimers in and out of equilibrium. Angew. Chem. 59: 735–739, https://doi.org/10.1002/anie.201912223.Search in Google Scholar PubMed
Hein, J.E. and Fokin, V.V. (2010). Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39: 1302–1315, https://doi.org/10.1039/B904091A.Search in Google Scholar PubMed PubMed Central
Hendriks, B., Waelkens, J., Winne, J.M., and Du Prez, F.E. (2017). Poly(Thioether) vitrimers via transalkylation of trialkylsulfonium salts. ACS Macro Lett. 6: 930–934, https://doi.org/10.1021/acsmacrolett.7b00494.Search in Google Scholar PubMed
Huang, J., Zhang, L., Tang, Z., Wu, S., and Guo, B. (2018). Reprocessable and robust crosslinked elastomers via interfacial CN transalkylation of pyridinium. Compos. Sci. Technol. 168: 320–326, https://doi.org/10.1016/j.compscitech.2018.10.017.Search in Google Scholar
Huang, X., Ding, C., Wang, Y., Zhang, S., Duan, X., and Ji, H. (2024). Dual dynamic cross-linked epoxy vitrimers used for strong, detachable, and reworkable adhesives. ACS Appl. Mater. Interfaces 16: 38586–38605, https://doi.org/10.1021/acsami.4c08123.Search in Google Scholar PubMed
Hung, D.-Y., Lee, J.J., and Liu, Y.L. (2023). An effective approach for the preparation of epoxy vitrimers by in situ formation of dynamic and permanent linkages in a one-pot curing reaction. Polym. Chem. 14: 5004–5013, https://doi.org/10.1039/D3PY00957B.Search in Google Scholar
Inglis, A.J., Sinnwell, S., Stenzel, M., and Barner‐Kowollik, C. (2009). Ultrafast click conjugation of macromolecular building blocks at ambient temperature. Angew. Chem. 48: 2411–2414, https://doi.org/10.1002/anie.200805993.Search in Google Scholar PubMed
Irzhak, V.I., Uflyand, I.E., and Dzhardimalieva, G.I. (2022). Self-healing of polymers and polymer composites. Polymers 14, https://doi.org/10.3390/polym14245404.Search in Google Scholar PubMed PubMed Central
Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., and Law, K.L. (2015). Marine pollution. Plastic waste inputs from land into the ocean. Science 347: 768–771, https://doi.org/10.1126/science.1260352.Search in Google Scholar PubMed
Johansson, J.R., Beke-Somfai, T., Said Stålsmeden, A., and Kann, N. (2016). Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem. Rev. 116: 14726–14768, https://doi.org/10.1021/acs.chemrev.6b00466.Search in Google Scholar PubMed
Jourdain, A., Asbai, R., Anaya, O., Chehimi, M.M., Drockenmuller, E., and Montarnal, D. (2020). Rheological properties of covalent adaptable networks with 1,2,3-triazolium cross-links: the missing link between vitrimers and dissociative networks. Macromolecules 53: 1884–1900, https://doi.org/10.1021/acs.macromol.9b02204.Search in Google Scholar
Ke, Y., Yang, X., Chen, Q., Xue, J., Song, Z., Zhang, Y., Madbouly, S.A., Luo, Y., Li, M., Wang, Q., et al.. (2021). Recyclable and fluorescent epoxy polymer networks from cardanol via solvent-free epoxy-thiol chemistry. ACS Appl. Polym. Mater. 3: 3082–3092, https://doi.org/10.1021/acsapm.1c00284.Search in Google Scholar
Kim, W.B., Joshi, U.A., and Lee, J.S. (2004). Making polycarbonates without employing phosgene: an overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Ind. Eng. Chem. Res. 43: 1897–1914, https://doi.org/10.1021/ie034004z.Search in Google Scholar
Kim, G., Caglayan, C., and Yun, G.J. (2022). Epoxy-based catalyst-free self-healing elastomers at room temperature employing aromatic disulfide and hydrogen bonds. ACS Omega 7: 44750–44761, https://doi.org/10.1021/acsomega.2c04559.Search in Google Scholar PubMed PubMed Central
Kloxin, C.J. and Bowman, C.N. (2013). Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42: 7161–7173, https://doi.org/10.1039/C3CS60046G.Search in Google Scholar
Kloxin, C.J., Scott, T.F., Adzima, B.J., and Bowman, C.N. (2010). Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43: 2643–2653, https://doi.org/10.1021/ma902596s.Search in Google Scholar PubMed PubMed Central
Konuray, A.O., Fernández-Francos, X., and Ramis, X. (2017). Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polym. Chem. 8: 5934–5947, https://doi.org/10.1039/C7PY01263B.Search in Google Scholar
Kopeć, M., Szczepanowicz, K., Mordarski, G., Podgórna, K., Socha, R., Nowak, P., Warszyński, P., and Hack, T. (2015). Self-healing epoxy coatings loaded with inhibitor-containing polyelectrolyte nanocapsules. Prog. Org. Coat. 84: 97–106, https://doi.org/10.1016/j.porgcoat.2015.02.011.Search in Google Scholar
Korich, A.L. and Iovine, P.M. (2010). Boroxine chemistry and applications: a perspective. Dalton Trans. 39: 1423–1431, https://doi.org/10.1039/B917043J.Search in Google Scholar PubMed
Krishnakumar, B., Prasanna Sanka, R.V.S., Binder, W.H., Parthasarthy, V., Rana, S., and Karak, N. (2020). Vitrimers: associative dynamic covalent adaptive networks in thermoset polymers. Chem. Eng. J. 385: 123820, https://doi.org/10.1016/j.cej.2019.123820.Search in Google Scholar
Krishnakumar, B., Pucci, A., Wadgaonkar, P.P., Kumar, I., Binder, W.H., and Rana, S. (2022). Vitrimers based on bio-derived chemicals: overview and future prospects. Chem. Eng. J. 433: 133261, https://doi.org/10.1016/j.cej.2021.133261.Search in Google Scholar
Kuang, X., Roach, D.J., Wu, J., Hamel, C.M., Ding, Z., Wang, T., Dunn, M.L., and Qi, H.J. (2018). Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29: 1805290, https://doi.org/10.1002/adfm.201805290.Search in Google Scholar
Kulchat, S. and Lehn, J.-M. (2015). Dynamic covalent chemistry of nucleophilic substitution component exchange of quaternary ammonium salts. Chem. Asian J. 10: 2484–2496, https://doi.org/10.1002/asia.201500604.Search in Google Scholar PubMed
Kumar, A. and Connal, L.A. (2023). Biobased transesterification vitrimers. Macromol. Rapid Commun. 44: e2200892, https://doi.org/10.1002/marc.202200892.Search in Google Scholar PubMed
Lee, Y.-H., Wang, L.Y., Tsai, C.Y., and Lee, C.W. (2022). Self-healing nanocomposites with carbon nanotube/graphene/Fe3O4 nanoparticle tricontinuous networks for electromagnetic radiation shielding. ACS Appl. Nano Mater. 5: 16423–16439, https://doi.org/10.1021/acsanm.2c03492.Search in Google Scholar
Li, Q., Ma, S., Wang, S., Yuan, W., Xu, X., Wang, B., Huang, K., and Zhu, J. (2019). Facile catalyst-free synthesis, exchanging, and hydrolysis of an acetal motif for dynamic covalent networks. J. Mater. Chem. A 7: 18039–18049, https://doi.org/10.1039/C9TA04073K.Search in Google Scholar
Li, Z., Souza, L.R.D., Litina, C., Markaki, A.E., and Al-Tabbaa, A. (2020). A novel biomimetic design of a 3D vascular structure for self-healing in cementitious materials using Murray’s law. Mater. Des. 190: 108572, https://doi.org/10.1016/j.matdes.2020.108572.Search in Google Scholar
Li, C., Chen, Y., Zeng, Y., Wu, Y., Liu, W., and Qiu, R. (2022). Strong and recyclable soybean oil-based epoxy adhesives based on dynamic borate. Eur. Polym. J. 162: 110923, https://doi.org/10.1016/j.eurpolymj.2021.110923.Search in Google Scholar
Li, X., Wu, S., Yu, S., Xiao, C., Tang, Z., and Guo, B. (2022). A facile one-pot route to elastomeric vitrimers with tunable mechanical performance and superior creep resistance. Polymer 238: 124379, https://doi.org/10.1016/j.polymer.2021.124379.Search in Google Scholar
Li, W., Xiao, L., Huang, J., Wang, Y., Nie, X., and Chen, J. (2022). Bio-based epoxy vitrimer for recyclable and carbon fiber reinforced materials: synthesis and structure-property relationship. Compos. Sci. Technol. 227: 109575, https://doi.org/10.1016/j.compscitech.2022.109575.Search in Google Scholar
Li, G., Zhang, P., Huo, S., Fu, Y., Chen, L., Wu, Y., Zhang, Y., Chen, M., Zhao, X., and Song, P. (2021b). Mechanically strong, thermally healable, and recyclable epoxy vitrimers enabled by ZnAl-layer double hydroxides. ACS Sustain. Chem. Eng. 9: 2580–2590, https://doi.org/10.1021/acssuschemeng.0c08636.Search in Google Scholar
Li, H., Zhang, B., Wang, R., Yang, X., He, X., Ye, H., Cheng, J., Yuan, C., Zhang, Y., and Ge, Q. (2022). Solvent‐free upcycling vitrimers through digital light processing‐based 3D printing and bond exchange reaction. Adv. Funct. Mater. 32, https://doi.org/10.1002/adfm.202111030.Search in Google Scholar
Li, F., Nguyen, G.T.M., Vancaeyzeele, C., Vidal, F., and Plesse, C. (2023). Vitrimer ionogels towards sustainable solid-state electrolytes. RSC Adv. 13: 6656–6667, https://doi.org/10.1039/D2RA06829J.Search in Google Scholar PubMed PubMed Central
Liu, Y., He, J., Le, Y.-D., Zhao, X.-L., and Zeng, J.-B (2020b). Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind. Crops Prod. 153: 112576, https://doi.org/10.1016/j.indcrop.2020.112576.Search in Google Scholar
Liu, L., He, S., Zhang, S., Zhang, M., and Guiver, M.D. (2016). 1,2,3-triazolium-based poly(2,6-dimethyl phenylene oxide) copolymers as anion exchange membranes. ACS Appl. Mater. Interfaces 8: 4651–4660, https://doi.org/10.1021/acsami.5b11519.Search in Google Scholar PubMed
Liu, W.-X., Zhang, C., Zhang, H., Zhao, N., Yu, Z.X., and Xu, J. (2017). Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc. 139: 8678–8684, https://doi.org/10.1021/jacs.7b03967.Search in Google Scholar PubMed
Liu, X., Zhang, E., Feng, Z., Liu, J., Chen, B., and Liang, G. (2021c). Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites. J. Mater. Sci. 56: 1–19, https://doi.org/10.1007/s10853-021-06291-5.Search in Google Scholar
Liu, H., Zhang, H., Wang, H., Huang, X., Huang, G., and Wu, J. (2019). Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity. Chem. Eng. J. 368: 61–70, https://doi.org/10.1016/j.cej.2019.02.177.Search in Google Scholar
Liu, T., Hao, C., Shao, L., Kuang, W., Cosimbescu, L., Simmons, K.L., and Zhang, J. (2020a). Carbon fiber reinforced epoxy vitrimer: robust mechanical performance and facile hydrothermal decomposition in pure water. Macromol. Rapid Commun. 42, https://doi.org/10.1002/marc.202000458.Search in Google Scholar PubMed
Liu, X., Li, Y., Xing, X., Zhang, G., and Jing, X. (2021a). Fully recyclable and high performance phenolic resin based on dynamic urethane bonds and its application in self-repairable composites. Polymer 229: 124022, https://doi.org/10.1016/j.polymer.2021.124022.Search in Google Scholar
Liu, Y., Tang, Z., Chen, J., Xiong, J., Wang, D., Wang, S., Wu, S., and Guo, B. (2020c). Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree. Polym. Chem. 11: 1348–1355, https://doi.org/10.1039/C9PY01826C.Search in Google Scholar
Liu, C., Yin, Q., Li, X., Hao, L., Zhang, W., Bao, Y., and Ma, J. (2021b). A waterborne polyurethane–based leather finishing agent with excellent room temperature self-healing properties and wear-resistance. Adv. Compos. Hybrid Mater. 4: 138–149, https://doi.org/10.1007/s42114-021-00206-3.Search in Google Scholar
Lorero, I., Rodríguez, A., Campo, M., and Prolongo, S. (2022). Thermally remendable, weldable, and recyclable epoxy network crosslinked with reversible diels-alder bonds. Polymer 259: 125334, https://doi.org/10.1016/j.polymer.2022.125334.Search in Google Scholar
Lu, Y.-X. and Guan, Z. (2012). Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon–carbon double bonds. J. Am. Chem. Soc. 134: 14226–14231, https://doi.org/10.1021/ja306287s.Search in Google Scholar PubMed
Lu, Y.-X., Tournilhac, F., Leibler, L., and Guan, Z. (2012). Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 134: 8424–8427, https://doi.org/10.1021/ja303356z.Search in Google Scholar PubMed
Lu, Lu, Pan, J., and Li, G. (2017). Recyclable high-performance epoxy based on transesterification reaction. J. Mater. Chem. A 5: 21505–21513, https://doi.org/10.1039/C7TA06397K.Search in Google Scholar
Łukaszczyk, J., Janicki, B., and Kaczmarek, M. (2011). Synthesis and properties of isosorbide based epoxy resin. Eur. Polym. J. 47: 1601–1606, https://doi.org/10.1016/j.eurpolymj.2011.05.009.Search in Google Scholar
Luo, Z., Pan, X., Liu, F., Yi, Q., Zeng, Y., Chen, Y., and Wang, C. (2024). Catalyst-free epoxy vitrimers from rosin: highly mechanical performance, fast self-healing, and facile recycling. Eur. Polym. J. 202: 112606, https://doi.org/10.1016/j.eurpolymj.2023.112606.Search in Google Scholar
Ma, Z., Wang, Y., Zhu, J., Yu, J., and Hu, Z. (2017). Bio-based epoxy vitrimers: reprocessibility, controllable shape memory, and degradability. J. Polym. Sci., Part A: Polym. Chem. 55, https://doi.org/10.1002/pola.28544.Search in Google Scholar
Ma, S., Wei, J., Jia, Z., Yu, T., Yuan, W., Li, Q., Wang, S., You, S., Liu, R., and Zhu, J. (2019). Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 7: 1233–1243, https://doi.org/10.1039/C8TA07140C.Search in Google Scholar
Ma, J., Porath, L.E., Haque, M.F., Sett, S., Rabbi, K.F., Nam, S., Miljkovic, N., and Evans, C.M. (2021). Ultra-thin self-healing vitrimer coatings for durable hydrophobicity. Nat. Commun. 12: 5210, https://doi.org/10.1038/s41467-021-25508-4.Search in Google Scholar PubMed PubMed Central
MacArthur, D.E., Waughray, D., and Stuchtey, M.R. (2016). The new plastics economy: rethinking the future of plastics. World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, UK.Search in Google Scholar
Manarin, E., Da Via, F., Rigatelli, B., Turri, S., and Griffini, G. (2023). Bio-based vitrimers from 2,5-furandicarboxylic acid as repairable, reusable, and recyclable epoxy systems. ACS Appl. Polym. Mater. 5: 828–838, https://doi.org/10.1021/acsapm.2c01774.Search in Google Scholar PubMed PubMed Central
Mao, H.-I., Hu, J.Y., Shiu, J.W., Rwei, S.P., and Chen, C.W. (2023). Sustainability and repeatedly recycled epoxy-based vitrimer electromagnetic shielding composite material. Polym. Test. 127: 108200, https://doi.org/10.1016/j.polymertesting.2023.108200.Search in Google Scholar
Martinez-Diaz, D., Cortés, A., Jiménez-Suárez, A., and Prolongo, S.G. (2022). Hardener isomerism and content of dynamic disulfide bond effect on chemical recycling of epoxy networks. ACS Appl. Polym. Mater. 4: 5068–5076, https://doi.org/10.1021/acsapm.2c00598.Search in Google Scholar
Massy, J. (2017). Thermoplastic and thermosetting polymers BT – a little book about BIG chemistry. In: Massy, J. (Ed.). The story of man-made polymers. Springer International Publishing, Germany, pp. 19–26.10.1007/978-3-319-54831-9_5Search in Google Scholar
Matsukizono, H. and Endo, T. (2018). Reworkable polyhydroxyurethane films with reversible acetal networks obtained from multifunctional six-membered cyclic carbonates. J. Am. Chem. Soc. 140: 884–887, https://doi.org/10.1021/jacs.7b11824.Search in Google Scholar PubMed
Memon, H., Liu, H., Rashid, M.A., Chen, L., Jiang, Q., Zhang, L., Wei, Y., Liu, W., and Qiu, Y. (2020a). Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 53, https://doi.org/10.1021/acs.macromol.9b02006.Search in Google Scholar
Memon, H., Yi, W., Zhang, L., Jiang, Q., and Liu, W. (2020b). An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites. Compos. Sci. Technol. 199: 108314, https://doi.org/10.1016/j.compscitech.2020.108314.Search in Google Scholar
Memon, H., Yi, W., and Zhu, C. (2022). Recyclable and reformable epoxy resins based on dynamic covalent bonds – present, past, and future. Polym. Test. 105: 107420, https://doi.org/10.1016/j.polymertesting.2021.107420.Search in Google Scholar
Men, Y., Brevé, T.G., Liu, H., Denkova, A.G., and Eelkema, R. (2021). Photo cleavable thioacetal block copolymers for controlled release. Polym. Chem. 12: 3612–3618, https://doi.org/10.1039/D1PY00514F.Search in Google Scholar PubMed PubMed Central
Meyer, G.W., Pak, S., Lee, Y., and McGrath, J. (1995). New high-performance thermosetting polymer matrix material systems. Polymer 36: 2303–2309, https://doi.org/10.1016/0032-3861(95)95311-N.Search in Google Scholar
Miao, P., Leng, X., Liu, J., Song, G., He, M., and Li, Y. (2022). Regulating the dynamic behaviors of transcarbamoylation-based vitrimers via mono-variation in density of exchangeable hydroxyl. Macromolecules 55: 4956–4966, https://doi.org/10.1021/acs.macromol.2c00127.Search in Google Scholar
Montarnal, D., Capelot, M., Tournilhac, F., and Leibler, L. (2011). Silica-like malleable materials from permanent organic networks. Science 334: 965–968, https://doi.org/10.1126/science.1212648.Search in Google Scholar PubMed
Moreno, A., Morsali, M., and Sipponen, M.H. (2021). Catalyst-free synthesis of lignin vitrimers with tunable mechanical properties: circular polymers and recoverable adhesives. ACS Appl. Mater. Interfaces 13: 57952–57961, https://doi.org/10.1021/acsami.1c17412.Search in Google Scholar PubMed PubMed Central
Nabipour, H., Wang, X., Kandola, B., Song, L., Kan, Y., Chen, J., and Hu, Y. (2023). A bio-based intrinsically flame-retardant epoxy vitrimer from furan derivatives and its application in recyclable carbon fiber composites. Polym. Degrad. Stab. 207: 110206, https://doi.org/10.1016/j.polymdegradstab.2022.110206.Search in Google Scholar
Nifant’ev, I.E., Shlyakhtin, A.V., Tavtorkin, A.N., Kosarev, M.A., Gavrilov, D.E., Komarov, P.D., Ilyin, S.O., Karchevsky, S.G., and Ivchenko, P.V. (2019). Mechanistic study of transesterification in TBD-catalyzed ring-opening polymerization of methyl ethylene phosphate. Eur. Polym. J. 118: 393–403, https://doi.org/10.1016/j.eurpolymj.2019.06.015.Search in Google Scholar
Nishimura, Y., Chung, J., Muradyan, H., and Guan, Z. (2017). Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design. J. Am. Chem. Soc. 139: 14881–14884, https://doi.org/10.1021/jacs.7b08826.Search in Google Scholar PubMed
Niu, W., O’Sullivan, C., Rambo, B.M., Smith, M.D., and Lavigne, J.J. (2005). Self-repairing polymers: poly(dioxaborolane)s containing trigonal planar boron. Chem. Commun.: 4342–4344, https://doi.org/10.1039/B504634C.Search in Google Scholar
Obadia, M.M., Mudraboyina, B.P., Serghei, A., Montarnal, D., and Drockenmuller, E. (2015). Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C–N bonds. J. Am. Chem. Soc. 137: 6078–6083, https://doi.org/10.1021/jacs.5b02653.Search in Google Scholar PubMed
Obadia, M., Jourdain, A., Cassagnau, P., Montarnal, D., and Drockenmuller, E. (2017). Tuning the viscosity profile of ionic vitrimers incorporating 1,2,3‐triazolium cross‐links. Adv. Funct. Mater. 27, https://doi.org/10.1002/adfm.201703258.Search in Google Scholar
Ogden, W.A. and Guan, Z. (2018). Recyclable, strong, and highly malleable thermosets based on boroxine networks. J. Am. Chem. Soc. 140: 6217–6220, https://doi.org/10.1021/jacs.8b03257.Search in Google Scholar PubMed
Palmieri, B., Cilento, F., Amendola, E., Valente, T., Dello Iacono, S., Giordano, M., and Martone, A. (2023). An investigation of the healing efficiency of epoxy vitrimer composites based on Zn2+ catalyst. Polymers 15, https://doi.org/10.3390/polym15173611.Search in Google Scholar PubMed PubMed Central
Peng, J., Xie, S., Liu, T., Wang, D., Ou, R., Guo, C., Wang, Q., and Liu, Z. (2022). High-performance epoxy vitrimer with superior self-healing, shape-memory, flame retardancy, and antibacterial properties based on multifunctional curing agent. Composites, Part B 242: 110109, https://doi.org/10.1016/j.compositesb.2022.110109.Search in Google Scholar
Pepels, M., Filot, I., Klumperman, B., and Goossens, H. (2013). Self-healing systems based on disulfide–thiol exchange reactions. Polym. Chem. 4: 4955–4965, https://doi.org/10.1039/C3PY00087G.Search in Google Scholar
Polgar, L.M., van Duin, M., Broekhuis, A.A., and Picchioni, F. (2015). Use of diels–alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? Macromolecules 48: 7096–7105, https://doi.org/10.1021/acs.macromol.5b01422.Search in Google Scholar
Pulikkalparambil, H., Sanjay, M.R., Siengchin, S., Mohammad Jawaid, A.K., and Pruncu, C.L. (2020). 17 – self-repairing hollow-fiber polymer composites. In: Khan, A. (Ed.). Woodhead publishing series in composites science and engineering. Woodhead Publishing, Cambridge, pp. 313–326.10.1016/B978-0-12-817354-1.00017-XSearch in Google Scholar
Qu, Y., Lu, X., and Xin, Z. (2024). Biobased polybenzoxazine vitrimer with imine bonds: shape memory, reprocessing, and degradation. ACS Sustain. Chem. Eng. 12: 7739–7747, https://doi.org/10.1021/acssuschemeng.4c00052.Search in Google Scholar
Quienne, B., Kasmi, N., Dieden, R., Caillol, S., and Habibi, Y. (2021). Isocyanate-free fully biobased star polyester-urethanes: synthesis and thermal properties. Biomacromolecules 21: 1943–1951, https://doi.org/10.1021/acs.biomac.0c00156.Search in Google Scholar PubMed
Rahimi, A. and García, J.M. (2017). Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem 1: 46, https://doi.org/10.1038/s41570-017-0046.Search in Google Scholar
Rana, S., Solanki, M., Sahoo, N.G., and Krishnakumar, B. (2022). Bio-vitrimers for sustainable circular bio-economy. Polymers 14: 4338, https://doi.org/10.3390/polym14204338.Search in Google Scholar PubMed PubMed Central
Rashid, M.A., Zhu, S., Zhang, L., Jin, K., and Liu, W. (2023). High-performance and fully recyclable epoxy resins cured by imine-containing hardeners derived from vanillin and syringaldehyde. Eur. Polym. J. 187: 111878, https://doi.org/10.1016/j.eurpolymj.2023.111878.Search in Google Scholar
Reinoso, D.M., Ferreira, M.L., and Tonetto, G.M. (2013). Study of the reaction mechanism of the transesterification of triglycerides catalyzed by zinc carboxylates. J. Mol. Catal. A: Chem. 377: 29–41, https://doi.org/10.1016/j.molcata.2013.04.024.Search in Google Scholar
Ren, Q.-R., Gu, S., Liu, J.H., Wang, Y.Z., and Chen, L. (2023). Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polym. Degrad. Stab. 211: 110315, https://doi.org/10.1016/j.polymdegradstab.2023.110315.Search in Google Scholar
Roig, A., Agizza, M., Serra, À., and De la Flor, S. (2023). Disulfide vitrimeric materials based on cystamine and diepoxy eugenol as bio-based monomers. Eur. Polym. J. 194: 112185, https://doi.org/10.1016/j.eurpolymj.2023.112185.Search in Google Scholar
Röttger, M., Domenech, T., van der Weegen, R., Breuillac, A., Nicolaÿ, R., and Leibler, L. (2017). High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356: 62–65, https://doi.org/10.1126/science.aah5281.Search in Google Scholar PubMed
Ruiz de Luzuriaga, A., Martin, R., Markaide, N., Rekondo, A., Cabañero, G., Rodríguez, J., and Odriozola, I. (2016a). Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 3: 241–247, https://doi.org/10.1039/C6MH00029K.Search in Google Scholar
Ruiz de Luzuriaga, A., Matxain, J.M., Ruipérez, F., Martin, R., Asua, J.M., Cabañero, G., and Odriozola, I. (2016b). Transient mechanochromism in epoxy vitrimer composites containing aromatic disulfide crosslinks. J. Mater. Chem. C 4: 6220–6223, https://doi.org/10.1039/C6TC02383E.Search in Google Scholar
Ruiz de Luzuriaga, A., Markaide, Nerea, Salaberria, A.M., Azcune, I., Rekondo, A., and Grande, H.J. (2022). Aero grade epoxy vitrimer towards commercialization. Polymers 14, https://doi.org/10.3390/polym14153180.Search in Google Scholar PubMed PubMed Central
Sangaletti, D., Ceseracciu, L., Marini, L., Athanassiou, A., and Zych, A. (2023). Biobased boronic ester vitrimer resin from epoxidized linseed oil for recyclable carbon fiber composites. Resour. Conserv. Recycl. 198: 107205, https://doi.org/10.1016/j.resconrec.2023.107205.Search in Google Scholar
Sangermano, M., Bergoglio, M., and Schögl, S. (2023). Biobased vitrimeric epoxy networks. Macromol. Mater. Eng.: 2300371, https://doi.org/10.1002/mame.202300371.Search in Google Scholar
Santiago, D., Guzmán, D., Padilla, J., Verdugo, P., De la Flor, S., and Serra, À. (2023). Recyclable and reprocessable epoxy vitrimer adhesives. ACS Appl. Polym. Mater. 5: 2006–2015, https://doi.org/10.1021/acsapm.2c02063.Search in Google Scholar
Schenk, V., Labastie, K., Destarac, M., Olivier, P., and Guerre, M. (2022). Vitrimer composites: current status and future challenges. Maters Adv 3: 8012–8029, https://doi.org/10.1039/D2MA00654E.Search in Google Scholar
Schmets, A.J.M., van der Zaken, G., and Van der Zwaag, S. (2007). Self healing materials: an alternative approach to 20 centuries of materials science. De Gruyter, Germany.10.1007/978-1-4020-6250-6Search in Google Scholar
Scott, T.F., Schneider, A.D., Cook, W.D., and Bowman, C.N. (2005). Photoinduced plasticity in cross-linked polymers. Science 308: 1615–1617, https://doi.org/10.1126/science.1110505.Search in Google Scholar PubMed
Shi, Q., Yu, K., Kuang, X., Mu, X., Dunn, C.K., Dunn, M.L., Wang, T., and Jerry Qi, H. (2017). Recyclable 3D printing of vitrimer epoxy. Mater. Horiz. 4: 598–607, https://doi.org/10.1039/C7MH00043J.Search in Google Scholar
Shi, Y., Hong, Y., Hong, J., Yu, A., Lee, M.W., Lee, J., and Goh, M. (2022). Bio-based boronic ester vitrimer for realizing sustainable and highly thermally conducting nanocomposites. Composites, Part B 244: 110181, https://doi.org/10.1016/j.compositesb.2022.110181.Search in Google Scholar
Si, H., Zhou, L., Wu, Y., Song, L., Kang, M., Zhao, X., and Chen, M. (2020). Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Composites, Part B 199: 108278, https://doi.org/10.1016/j.compositesb.2020.108278.Search in Google Scholar
Sinadinović-Fišer, S., Janković, M., and Borota, O. (2012). Epoxidation of Castor oil with peracetic acid formed in situ in the presence of an ion exchange resin. Chem. Eng. Process. 62: 106–113, https://doi.org/10.1016/j.cep.2012.08.005.Search in Google Scholar
Skene, W.G. and Lehn, J.-M.P. (2004). Dynamers: polyacylhydrazone reversible covalent polymers, component exchange, and constitutional diversity. Proc. Natl. Acad. Sci. U. S. A. 101: 8270–8275, https://doi.org/10.1073/pnas.0401885101.Search in Google Scholar PubMed PubMed Central
Snyder, R.L., Fortman, D.J., De Hoe, G.X., Hillmyer, M.A., and Dichtel, W.R. (2018). Reprocessable acid-degradable polycarbonate vitrimers. Macromolecules 51: 389–397, https://doi.org/10.1021/acs.macromol.7b02299.Search in Google Scholar
Spiesschaert, Y., Guerre, M., De Baere, I., Van Paepegem, W., Winne, J.M., and Du Prez, F.E. (2020). Dynamic curing agents for amine-hardened epoxy vitrimers with short (Re)processing times. Macromolecules 53: 2485–2495, https://doi.org/10.1021/acs.macromol.9b02526.Search in Google Scholar
Stephenson, N.A., Zhu, J., Gellman, S.H., and Stahl, S.S. (2009). Catalytic transamidation reactions compatible with tertiary amide metathesis under ambient conditions. J. Am. Chem. Soc. 131: 10003–10008, https://doi.org/10.1021/ja8094262.Search in Google Scholar PubMed
Szajewski, R.P. and Whitesides, G.M. (1980). Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J. Am. Chem. Soc. 102: 2011–2026, https://doi.org/10.1021/ja00526a042.Search in Google Scholar
Taynton, P., Yu, K., Shoemaker, R.K., Jin, Y., Qi, H.J., and Zhang, W. (2014). Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 26: 3938–3942, https://doi.org/10.1002/adma.201400317.Search in Google Scholar PubMed
Trejo-Machin, A., Puchot, L., and Verge, P. (2020). A cardanol-based polybenzoxazine vitrimer: recycling, reshaping and reversible adhesion. Polym. Chem. 11: 7026–7034, https://doi.org/10.1039/D0PY01239D.Search in Google Scholar
Tretbar, C.A., Neal, J.A., and Guan, Z. (2019). Direct silyl ether metathesis for vitrimers with exceptional thermal stability. J. Am. Chem. Soc. 141: 16595–16599, https://doi.org/10.1021/jacs.9b08876.Search in Google Scholar PubMed
Tretbar, C., Castro, J., Yokoyama, K., and Guan, Z. (2023). Fluoride-catalyzed siloxane exchange as a robust dynamic chemistry for high-performance vitrimers. Adv. Mater. 35: e2303280, https://doi.org/10.1002/adma.202303280.Search in Google Scholar PubMed
Tripathi, S. and Bose, S. (2023). A designer schiff based motif offered dual dynamic exchangeable bonds, faster curing and closed‐loop circularity in epoxy vitrimers. SPE Polym. 5: 136–150, https://doi.org/10.1002/pls2.10114.Search in Google Scholar
Urdl, K., Kandelbauer, A., Kern, W., Müller, U., Thebault, M., and Zikulnig-Rusch, E. (2017). Self-healing of densely crosslinked thermoset polymers—a critical review. Prog. Org. Coat. 104: 232–249, https://doi.org/10.1016/j.porgcoat.2016.11.010.Search in Google Scholar
Van Ooteghem, D., Deveux, R., and Goethals, E. (1973). Study of the reaction between sulfides and sulfonium salts. Int. J. Sulfur Chem. 8: 31–35.Search in Google Scholar
Verdugo, P., Santiago, D., De la Flor, S., and Serra, À. (2024). A biobased epoxy vitrimer with dual relaxation mechanism: a promising material for renewable, reusable, and recyclable adhesives and composites. ACS Sustain. Chem. Eng. 12: 5965–5978, https://doi.org/10.1021/acssuschemeng.4c00205.Search in Google Scholar PubMed PubMed Central
Wang, B., Zhang, Z., Pei, Z., Qiu, J., and Wang, S. (2020). Current progress on the 3D printing of thermosets. Adv. Compos. Hybrid Mater. 3: 462–472, https://doi.org/10.1007/s42114-020-00183-z.Search in Google Scholar
Wang, H., Liu, H.C., Zhang, Y., Xu, H., Jin, B.Q., Cao, Z.X., Wu, H.T., Huang, G.S., and Wu, J.R. (2021). A triple crosslinking design toward epoxy vitrimers and carbon fiber composites of high performance and multi-shape memory. Chin. J. Polym. Sci. 39, https://doi.org/10.1007/s10118-021-2538-7.Search in Google Scholar
Wang, H., Guo, S., Zhang, X., Liu, Y., Liu, T., and Yu, H. (2022). Insight into the structure-property relationships of intramolecularly-catalyzed epoxy vitrimers. Mater. Des. 221: 110924, https://doi.org/10.1016/j.matdes.2022.110924.Search in Google Scholar
Ward, I.M. and Sweeney, J. (2012). The mechanical properties of polymers: general considerations. In: Mechanical properties of solid polymers. Wiley, New Jersey, US, pp. 19–29.10.1002/9781119967125.ch2Search in Google Scholar
Wei, R., Liu, Z., Wei, W., Wang, S., Lv, Y.j., and Han, G.C. (2021). Anticorrosion performance of hydrophobic acid-modified-MOFs/epoxy coatings. Colloid Interface Sci. Commun. 46: 100580, https://doi.org/10.1016/j.colcom.2021.100580.Search in Google Scholar
Wilcox, C., Van Sebille, E., and Hardesty, B.D. (2015). Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. U. S. A. 112: 11899–11904, https://doi.org/10.1073/pnas.1502108112.Search in Google Scholar PubMed PubMed Central
Willocq, B., Khelifa, F., Brancart, J., Van Assche, G., Dubois, P., and Raquez, J.M. (2017). One-component diels–alder based polyurethanes: a unique way to self-heal. RSC Adv. 7: 48047–48053, https://doi.org/10.1039/C7RA09898G.Search in Google Scholar
Wilson, G.O., Magnus Andersson, H., White, S.R., Sottos, N.R., Moore, J.S., and Braun, P.V. (2010). Self-healing polymers. In: Encyclopedia of polymer science and technology. Wiley, New Jersey, US.10.1002/0471440264.pst469Search in Google Scholar
Winne, J.M., Leibler, L., and Du Prez, F.E. (2019). Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym. Chem. 10: 6091–6108, https://doi.org/10.1039/C9PY01260E.Search in Google Scholar
Wojtecki, R., Meador, M.A., and Rowan, S.J. (2011). Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10: 14–27, https://doi.org/10.1038/nmat2891.Search in Google Scholar PubMed
Woldesenbet, E. (2010). Self-healing in single and multiple fiber(s) reinforced polymer composites. EPJ Web Conf. 6, https://doi.org/10.1051/epjconf/20100605002.Search in Google Scholar
Wong, M.Y. and Brook, M.A. (2022). Fluoride-initiated anionic ring-opening polymerization: mono- or difunctional polydimethylsiloxanes with different termini. Silicon 14: 3215–3220, https://doi.org/10.1007/s12633-022-01837-x.Search in Google Scholar
Worrell, B.T., Mavila, S., Wang, C., Kontour, T.M., Lim, C.H., McBride, M.K., Musgrave, C.B., Shoemaker, R., and Bowman, C.N. (2018a). A user’s guide to the thiol-thioester exchange in organic media: scope, limitations, and applications in material science. Polym. Chem. 9: 4523–4534, https://doi.org/10.1039/C8PY01031E.Search in Google Scholar
Worrell, B.T., McBride, M.K., Lyon, G.B., Cox, L.M., Wang, C., Mavila, S., Lim, C.H., Coley, H.M., Musgrave, C.B., Ding, Y., et al.. (2018b). Bistable and photoswitchable states of matter. Nat. Commun. 9: 2804, https://doi.org/10.1038/s41467-018-05300-7.Search in Google Scholar PubMed PubMed Central
Wu, H., Jin, B., Wang, H., Wu, W., Cao, Z., Wu, J., and Huang, G. (2020). A degradable and self-healable vitrimer based on non-isocyanate polyurethane. Front. Chem. 8: 585569, https://doi.org/10.3389/fchem.2020.585569.Search in Google Scholar PubMed PubMed Central
Wu, J., Yu, X., Zhang, H., Guo, J., Hu, J., and Li, M.H. (2020). Fully biobased vitrimers from glycyrrhizic acid and soybean oil for self-healing, shape memory, weldable, and recyclable materials. ACS Sustain. Chem. Eng. 8: 6479–6487, https://doi.org/10.1021/acssuschemeng.0c01047.Search in Google Scholar
Wu, P., Liu, L., and Wu, Z. (2022). A transesterification-based epoxy vitrimer synthesis enabled high crack self-healing efficiency to fibrous composites. Compos. Appl. Sci. Manuf. 162: 107170, https://doi.org/10.1016/j.compositesa.2022.107170.Search in Google Scholar
Xiong, C., Wang, T., Zhang, Y., Duan, C., Zhang, Z., Zhou, Q., Xiong, Q., Zhao, M., Wang, B., and Ni, Y. (2023). Multifunctional conductive material based on intelligent porous paper used in conjunction with a vitrimer for electromagnetic shielding, sensing, joule heating, and antibacterial properties. ACS Appl. Mater. Interfaces 15: 33763–33773, https://doi.org/10.1021/acsami.3c06926.Search in Google Scholar PubMed
Xu, H., Wang, H., Zhang, Y., and Wu, J. (2022). Vinylogous urethane based epoxy vitrimers with closed-loop and multiple recycling routes. Ind. Eng. Chem. Res. 61: 17524–17533, https://doi.org/10.1021/acs.iecr.2c03393.Search in Google Scholar
Yadav, J.S., Reddy, B., Krishna, A., Reddy, C.S., and Narsaiah, A. (2007). Triphenylphosphine: an efficient catalyst for transesterification of β-ketoesters. J. Mol. Catal. A: Chem. 261: 93–97, https://doi.org/10.1016/j.molcata.2006.07.060.Search in Google Scholar
Yan, P., Zhao, W., Fu, X., Liu, Z., Kong, W., Zhou, C., and Lei, J. (2017). Multifunctional polyurethane-vitrimers completely based on transcarbamoylation of carbamates: thermally-induced dual-shape memory effect and self-welding. RSC Adv. 7: 26858–26866, https://doi.org/10.1039/C7RA01711A.Search in Google Scholar
Yang, Y., Huang, L., Wu, R., Fan, W., Dai, Q., He, J., and Bai, C. (2020a). Assembling of reprocessable polybutadiene-based vitrimers with high strength and shape memory via catalyst-free imine-coordinated boroxine. ACS Appl. Mater. Interfaces 12: 33305–33314, https://doi.org/10.1021/acsami.0c09712.Search in Google Scholar PubMed
Yang, Y., Song, Q., Li, C., Tan, J., Xue, Y., Su, Z., Zhang, G., and Zhang, Q. (2020b). Reprocessable epoxy resins based on hydroxy-thioester and thiol-thioester dual exchanges. Ind. Eng. Chem. Res. 59: 4936–4944, https://doi.org/10.1021/acs.iecr.9b06520.Search in Google Scholar
Yang, Y., Xu, Y., Ji, Y., and Wei, Y. (2021). Functional epoxy vitrimers and composites. Prog. Mater. Sci. 120: 100710, https://doi.org/10.1016/j.pmatsci.2020.100710.Search in Google Scholar
Yi, M.C. and Khosla, C. (2016). Thiol-disulfide exchange reactions in the mammalian extracellular environment. Annu. Rev. Chem. Biomol. Eng. 7: 197–222, https://doi.org/10.1146/annurev-chembioeng-080615-033553.Search in Google Scholar PubMed PubMed Central
Ying, H., Zhang, Y., and Cheng, J. (2014). Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5: 3218, https://doi.org/10.1038/ncomms4218.Search in Google Scholar PubMed PubMed Central
Yoon, J.A., Kamada, J., Koynov, K., Mohin, J., Nicolaÿ, R., Zhang, Y., Balazs, A.C., Kowalewski, T., and Matyjaszewski, K. (2012). Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45: 142–149, https://doi.org/10.1021/ma2015134.Search in Google Scholar
Yu, K., Taynton, P., Zhang, W., Dunn, M.L., and Qi, H.J. (2014). Reprocessing and recycling of thermosetting polymers based on bond exchange reactions. RSC Adv. 4: 10108–10117, https://doi.org/10.1039/C3RA47438K.Search in Google Scholar
Yu, B., Feng, Y., Zhu, W., Wang, R., and Qi, S. (2019). Self-healing electromagnetic interference shielding composite based on diels–alder chemistry. J. Mater. Sci.: Mater. Electron. 30: 19994–20001, https://doi.org/10.1007/s10854-019-02366-x.Search in Google Scholar
Yu, L., Sun, X., Jin, Y., Zhang, W., and Long, R. (2021). Mechanics of vitrimer particle compression and fusion under heat press. Int. J. Mech. Sci. 201: 106466, https://doi.org/10.1016/j.ijmecsci.2021.106466.Search in Google Scholar
Yuan, C., Zhang, M.Q., and Rong, M.Z. (2014). Application of alkoxyamine in self-healing of epoxy. J. Mater. Chem. A 2: 6558–6566, https://doi.org/10.1039/C4TA00130C.Search in Google Scholar
Yue, L., Bonab, V.S., Yuan, D., Patel, A., Karimkhani, V., and Manas‐Zloczower, I. (2019). Vitrimerization: a novel concept to reprocess and recycle thermoset waste via dynamic chemistry. Global Challenges 3: 1800076, https://doi.org/10.1002/gch2.201800076.Search in Google Scholar PubMed PubMed Central
Yue, L., Guo, H., Kennedy, A., Patel, A., Gong, X., Ju, T., Gray, T., and Manas-Zloczower, I. (2020). Vitrimerization: converting thermoset polymers into vitrimers. ACS Macro Lett. 9: 836–842, https://doi.org/10.1021/acsmacrolett.0c00299.Search in Google Scholar PubMed
Yue, L., Su, Y.-L., Li, M., Yu, L., Montgomery, S.M., Sun, X., Finn, M.G., Gutekunst, W.R., Ramprasad, R., and Qi, H.J. (2023). One‐pot synthesis of depolymerizable Δ‐lactone based vitrimers. Adv. Mater. 35: e2300954, https://doi.org/10.1002/adma.202300954.Search in Google Scholar PubMed
Zee, N. and Nicolaÿ, R. (2020). Vitrimers: permanently crosslinked polymers with dynamic network topology. Prog. Polym. Sci. 104: 101233, https://doi.org/10.1016/j.progpolymsci.2020.101233.Search in Google Scholar
Zeng, R.-T., Wu, Y., Wang, M., and Zeng, J.B. (2017). Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polym. Test. 57: 281–287, https://doi.org/10.1016/j.polymertesting.2016.12.007.Search in Google Scholar
Zeng, Y., Li, J., Liu, S., and Yang, B. (2021). Rosin-based epoxy vitrimers with dynamic boronic ester bonds. Polymers 13, https://doi.org/10.3390/polym13193386.Search in Google Scholar PubMed PubMed Central
Zhang, B., Digby, Z.A., Flum, J.A., Chakma, P., Saul, J.M., Sparks, J.L., and Konkolewicz, D. (2016). Dynamic thiol–michael chemistry for thermoresponsive rehealable and malleable networks. Macromolecules 49: 6871–6878, https://doi.org/10.1021/acs.macromol.6b01061.Search in Google Scholar
Zhang, X., Wang, S., Jiang, Z., Li, Y., and Jing, X. (2020). Boronic ester based vitrimers with enhanced stability via internal boron-nitrogen coordination. J. Am. Chem. Soc. 142: 21852–21860, https://doi.org/10.1021/jacs.0c10244.Search in Google Scholar PubMed
Zhang, H., Zhou, L., Zhang, F., Yang, Q., Chen, M., Chen, Z., Zhang, Y., Xiao, P., Yu, S., Song, L., et al.. (2022). Aromatic disulfide epoxy vitrimer packaged electronic devices: nondestructive healing and recycling. Polymer 255: 125163, https://doi.org/10.1016/j.polymer.2022.125163.Search in Google Scholar
Zhang, Y., Yukiko, E., and Tadahisa, I. (2023). Bio-based vitrimers from divanillic acid and epoxidized soybean oil. RSC Sustainability 1: 543–553, https://doi.org/10.1039/D2SU00140C.Search in Google Scholar
Zhao, S. and Abu-Omar, M.M. (2018). Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules 51: 9816–9824, https://doi.org/10.1021/acs.macromol.8b01976.Search in Google Scholar
Zhao, S. and Abu-Omar, M.M. (2019). Catechol-mediated glycidylation toward epoxy vitrimers/polymers with tunable properties. Macromolecules 52: 3646–3654, https://doi.org/10.1021/acs.macromol.9b00334.Search in Google Scholar
Zhao, X.-L., Liu, Y.-Y., Weng, Y., and Zeng, J.B. (2020). Sustainable epoxy vitrimers from epoxidized soybean oil and vanillin. ACS Sustain. Chem. Eng. 8: 15020–15029, https://doi.org/10.1021/acssuschemeng.0c05727.Search in Google Scholar
Zhao, S., Wang, D., and Russell, T.P. (2021). Biobased dynamic polymer networks with rapid stress relaxation. ACS Sustain. Chem. Eng. 9: 11091–11099, https://doi.org/10.1021/acssuschemeng.1c02826.Search in Google Scholar
Zhao, X.-L., Tian, P.-X., Li, Y.D., and Zeng, J.B. (2022). Biobased covalent adaptable networks: towards better sustainability of thermosets. Green Chem. 24: 4363–4387, https://doi.org/10.1039/D2GC01325H.Search in Google Scholar
Zheng, N., Fang, Z., Zou, W., Zhao, Q., and Xie, T. (2016). Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem., Int. Ed. 55, https://doi.org/10.1002/anie.201602847.Search in Google Scholar PubMed
Zheng, J., Png, Z.M., Ng, S.H., Tham, G.X., Ye, E., Goh, S.S., Loh, X.J., and Li, Z. (2021). Vitrimers: current research trends and their emerging applications. Mater. Today 51, https://doi.org/10.1016/j.mattod.2021.07.003.Search in Google Scholar
Zheng, Y., Liu, T., He, H., Lv, Z., Xu, J., Ding, D., Dai, L., Huang, Z., and Si, C. (2023). Lignin-based epoxy composite vitrimers with light-controlled remoldability. Adv. Compos. Hybrid Mater. 6, https://doi.org/10.1007/s42114-023-00633-4.Search in Google Scholar
Zhou, L., Chen, M., and Zhao, X. (2017). Rapid degradation of disulfide-based thermosets through thiol-disulfide exchange reaction. Polymer 120: 1–8, https://doi.org/10.1016/j.polymer.2017.05.015.Search in Google Scholar
Zhou, F., Guo, Z., Wang, W., Lei, X., Zhang, B., Zhang, H., and Zhang, Q. (2018). Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos. Sci. Technol. 167: 79–85, https://doi.org/10.1016/j.compscitech.2018.07.041.Search in Google Scholar
Zhou, L., Zhang, G., Feng, Y., Zhang, H., Li, J., and Shi, X. (2018). Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. J. Mater. Sci. 53: 7030–7047, https://doi.org/10.1007/s10853-018-2015-z.Search in Google Scholar
Zhou, Z., Chen, S., Xu, X., Chen, Y., Xu, L., Zeng, Y., and Zhang, F. (2021). Room temperature self-healing crosslinked elastomer constructed by dynamic urea bond and hydrogen bond. Prog. Org. Coat. 154: 106213, https://doi.org/10.1016/j.porgcoat.2021.106213.Search in Google Scholar
Zhu, D.Y., Rong, M.Z., and Zhang, M.Q. (2015). Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog. Polym. Sci. 49: 175–220, https://doi.org/10.1016/j.progpolymsci.2015.07.002.Search in Google Scholar
Zych, A., Pinalli, R., Soliman, M., Vachon, J., and Dalcanale, E. (2020). Polyethylene vitrimers via silyl ether exchange reaction. Polymer 199: 122567, https://doi.org/10.1016/j.polymer.2020.122567.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Epoxy vitrimers: from essence to utility
- Research Articles
- Tamarind seed powder as filler in polypropylene and its impact on the mechanical and biodegradability of the composites
- Development and characterization of glass fiber composites impregnated with limestone powder and bagasse fiber
- Hyaluronic acid/κ-carrageenan films for mupirocin-controlled delivery
- Temperature field study and numerical computation of carbon fiber epoxy composite materials under unilateral thermal radiation
- 2D dendritic thermal growth pulsations: diffusion field associated with the transport of heat for application in organic-based systems
- Influence of different surface textures on wettability of UHMWPE and POM- an experimental study
- Use of machine learning methods for modelling mechanical parameters of PLA and PLA/native potato starch compound using aging data
- Influence of the viscosity of polymer melts on the coextrusion process based on wall slip conditions
Articles in the same Issue
- Frontmatter
- Review Article
- Epoxy vitrimers: from essence to utility
- Research Articles
- Tamarind seed powder as filler in polypropylene and its impact on the mechanical and biodegradability of the composites
- Development and characterization of glass fiber composites impregnated with limestone powder and bagasse fiber
- Hyaluronic acid/κ-carrageenan films for mupirocin-controlled delivery
- Temperature field study and numerical computation of carbon fiber epoxy composite materials under unilateral thermal radiation
- 2D dendritic thermal growth pulsations: diffusion field associated with the transport of heat for application in organic-based systems
- Influence of different surface textures on wettability of UHMWPE and POM- an experimental study
- Use of machine learning methods for modelling mechanical parameters of PLA and PLA/native potato starch compound using aging data
- Influence of the viscosity of polymer melts on the coextrusion process based on wall slip conditions