Startseite Properties of polyphenylene sulfide/multiwalled carbon nanotubes composites: a comparison between compression molding and microinjection molding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of polyphenylene sulfide/multiwalled carbon nanotubes composites: a comparison between compression molding and microinjection molding

  • Shengtai Zhou , Xue Lei , Zhongguo Zhao , Mei Liang und Huawei Zou EMAIL logo
Veröffentlicht/Copyright: 10. September 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work comparatively studied the electrical, morphological, and thermal properties of polyphenylene sulfide/multiwalled carbon nanotubes (PPS/CNT) composites prepared by compression molding (CM) and microinjection molding (μIM), respectively. The subsequent samples were termed as CM composites and microparts, respectively. Results revealed that the electrical conductivity of PPS/CNT microparts was lower than that of CM PPS/CNT composites, which was ascribed to the difference in shearing which affected microstructural evolution. In addition, SEM observations revealed that the distribution of CNTs became better in the PPS/CNT microparts, which was related to the prevailing higher shearing effect in μIM. The tensile strength of PPS/CNT microparts dropped for filler concentrations ≤2 wt% and it started to increase after reaching 10 wt%; in comparison with the PPS/CNT microparts, the tensile strength of CM PPS/CNT samples exhibited an opposite trend when the filler concentration was ≤3 wt%. After that, the tensile strength showed a monotonic increase with increasing CNT concentration. Both the uniform distribution of CNT and increase of crystallinity were crucial to improving the tensile strength of PPS/CNT moldings. This work showed that PPS/CNT moldings with good electrical conductivity and mechanical performance can be molded at relatively high filler concentrations, which is critical for applications in demanding engineering sectors.


Corresponding author: Huawei Zou, The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, 610065, Chengdu, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 52103040

Funding source: China Postdoctoral Science Foundation

Award Identifier / Grant number: 2020M673217

Acknowledgments

This authors thank Prof. Yinghong Chen (Sichuan University) for access to use the MicroPower 5 micromolding machine.

  1. Research ethics: Not Applicable.

  2. Informed consent: Not Applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: National Natural Science Foundation of China (grant number: 52103040); China Postdoctoral Science Foundation (grant number: 2020M673217).

  6. Data availability: The raw data can be obtained on request from the corresponding author.

References

Abbasi, S., Carreau, P.J., and Derdouri, A. (2010). Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: rheology, conductivity and mechanical properties. Polymer 51: 922–935, https://doi.org/10.1016/j.polymer.2009.12.041.Suche in Google Scholar

Alig, I., Skipa, T., Lellinger, D., and Pötschke, P. (2008). Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49: 3524–3532, https://doi.org/10.1016/j.polymer.2008.05.037.Suche in Google Scholar

Aliyeva, N., Sas, H.S., and Okan, B.S. (2021). Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Compos. Part A 149: 106525, https://doi.org/10.1016/j.compositesa.2021.106525.Suche in Google Scholar

Attanasio, A., Ceretti, E., Fassi, I., and Pagano, C. (2017). Experimental study on micro manufacturing of carbon nanotube (CNT) plastic composites. Int. J. Adv. Manuf. Tech. 92: 1721–1729, https://doi.org/10.1007/s00170-017-0288-z.Suche in Google Scholar

Bagotia, N., Choudhary, V., and Sharma, D.K. (2018). Superior electrical, mechanical and electromagnetic interference shielding properties of polycarbonate/ethylene-methyl acrylate-in situ reduced graphene oxide nanocomposites. J. Mater. Sci. 53: 16047–16061, https://doi.org/10.1007/s10853-018-2749-7.Suche in Google Scholar

Bongiorno, A., Pagano, C., Baldi, F., Bellantone, V., Surace, R., and Fassi, I. (2017). Micro‐injection molding of CNT nanocomposites obtained via compounding process. Polym. Compos. 38: 349–362, https://doi.org/10.1002/pc.23593.Suche in Google Scholar

Brady, D.G. (1976). The crystallinity of poly(phenylene sulfide) and its effect on polymer properties. J. Appl. Polym. Sci. 20: 2541–2551, https://doi.org/10.1002/app.1976.070200921.Suche in Google Scholar

Datta, P., Guha, C., and Sarkhel, G. (2015). Mechanical, rheological, and electrical properties of multiwalled carbon nanotube reinforced ASA/Na‐ionomer blend. J. Appl. Polym. Sci. 132: 42516, https://doi.org/10.1002/app.42516.Suche in Google Scholar

Dekel, Z. and Kenig, S. (2021). Micro-injection molding of polymer nanocomposites composition-process-properties relationship. Int. Polym. Process. 36: 276–286, https://doi.org/10.1515/ipp-2020-4065.Suche in Google Scholar

Díez-Pascual, A.M. and Naffakh, M. (2013). Enhancing the thermomechanical behaviour of poly (phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Compos. Part A 54: 10–19, https://doi.org/10.1016/j.compositesa.2013.06.018.Suche in Google Scholar

Ezat, G.S., Kelly, A.L., Youseffi, M., and Coates, P.D. (2022). Tensile, rheological and morphological characterizations of multi-walled carbon nanotube/polypropylene composites prepared by microinjection and compression molding. Inter. Polym. Process. 37: 45–53, https://doi.org/10.1515/ipp-2021-4156.Suche in Google Scholar

Gelves, G.A., Lin, B., Sundararaj, U., and Haber, J.A. (2006). Low electrical percolation threshold of silver and copper nanowires in polystyrene composites. Adv. Funct. Mater. 16: 2423–2430, https://doi.org/10.1002/adfm.200600336.Suche in Google Scholar

Giboz, J., Copponnex, T., and Mélé, P. (2007). Microinjection molding of thermoplastic polymers: a review. J. Manuf. Syst. 17: R96, https://doi.org/10.1088/0960-1317/17/6/r02.Suche in Google Scholar

Gu, J., Guo, Y., Yang, X., Liang, C., Geng, W., Tang, L., Li, N., and Zhang, Q. (2017). Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos. Part A 95: 267–273, https://doi.org/10.1016/j.compositesa.2017.01.019.Suche in Google Scholar

Gulrez, S.K.H., Ali Mohsin, M.E., Shaikh, H., Anis, A., Pulose, A.M., Yadav, M.K., Qua, E.H.P., and Al-Zahrani, S.M. (2014). A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 35: 900–914, https://doi.org/10.1002/pc.22734.Suche in Google Scholar

Guo, J., Nie, M., and Wang, Q. (2020). Self-poling polyvinylidene fluoride-based piezoelectric energy harvester featuring highly oriented β-phase structured at multiple scales. ACS Sustain. Chem. Eng. 9: 499–509, https://doi.org/10.1021/acssuschemeng.0c07802.Suche in Google Scholar

Huang, C.K., Chen, S.W., and Wei, W.C.J. (2006). Processing and property improvement of polymeric composites with added ZnO nanoparticles through microinjection molding. J. Appl. Polym. Sci. 102: 6009–6016, https://doi.org/10.1002/app.25195.Suche in Google Scholar

Huang, Y.Y. and Terentjev, E.M. (2012). Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4: 275–295, https://doi.org/10.3390/polym4010275.Suche in Google Scholar

Jiang, R., Lashkari, P., Zhou, S., and Hrymak, A.N. (2022). Effect of mixing conditions and polymer particle size on the properties of polypropylene/graphite nanoplatelets micromoldings. Int. Polym. Process. 37: 372–382, https://doi.org/10.1515/ipp-2022-0004.Suche in Google Scholar

Kaur, G., Adhikari, R., Cass, P., Bown, M., and Gunatillake, P. (2015). Electrically conductive polymers and composites for biomedical applications. RSC Adv. 5: 37553–37567, https://doi.org/10.1039/C5RA01851J.Suche in Google Scholar

Kamal, M.R., Chu, J., Derdouri, S., and Hrymak, A. (2010). Morphology of microinjection moulded polyoxymethylene. Plast. Rubber. Compos. 39: 332–341, https://doi.org/10.1179/174328910X12691245470518.Suche in Google Scholar

Kazemi, Y., Kakroodi, A.R., Wang, S., Ameli, A., Filleter, T., Pötschke, P., and Park, C.B. (2017). Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer 129: 179–188, https://doi.org/10.1016/j.polymer.2017.09.056.Suche in Google Scholar

Ke, K., Yue, L., Shao, H., Yang, M.-B., Yang, W., and Manas-Zloczower, I. (2021). Boosting electrical and piezoresistive properties of polymer nanocomposites via hybrid carbon fillers: a review. Carbon 173: 1020–1040, https://doi.org/10.1016/j.carbon.2020.11.070.Suche in Google Scholar

Kenny, J.M. and Maffezzoli, A. (1991). Crystallization kinetics of poly(phenylene sulfide) (PPS) and PPS/carbon fiber composites. Polym. Eng. Sci. 31: 607–614, https://doi.org/10.1002/pen.760310812.Suche in Google Scholar

Krause, B., Pötschke, P., and Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos. Sci. Technol. 69: 1505–1515, https://doi.org/10.1016/j.compscitech.2008.07.007.Suche in Google Scholar

Krause, B., Pötschke, P., Ilin, E., and Predtechenskiy, M. (2016). Melt mixed SWCNT-polypropylene composites with very low electrical percolation. Polymer 98: 45–50, https://doi.org/10.1016/j.polymer.2016.06.004.Suche in Google Scholar

Krupa, I., Cecen, V., Boudenne, A., Prokeš, J., and Novák, I. (2013). The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Mater. Des. 51: 620–628, https://doi.org/10.1016/j.matdes.2013.03.067.Suche in Google Scholar

Lei, X., Gong, X., Li, J., Shi, Y., Liang, M., Zou, H., and Zhou, S. (2024). Fabrication of electrically conductive microparts by constructing carbon black-rich network under high shear conditions in microinjection molding. Front. Mater. 11: 1415283, https://doi.org/10.3389/fmats.2024.1415283.Suche in Google Scholar

Lei, X., Liang, M., Zou, H., and Zhou, S. (2023a). Properties of polyamide 6/multiwalled carbon nanotubes composites: the influence of processing methods. J. Appl. Polym. Sci. 140: e53424, https://doi.org/10.1002/app.53424.Suche in Google Scholar

Lei, X., Liang, M., Zou, H., and Zhou, S. (2023b). A holistic evaluation of the influence of shear rates and matrix viscosity on the properties of polypropylene/multi‐walled carbon nanotubes composites. Polym. Adv. Technol. 34: 317–331, https://doi.org/10.1002/pat.5889.Suche in Google Scholar

Li, D., Zhai, T., Gong, Q., Fei, G., and Xia, H. (2015). Effect of processing temperature on structure and properties of microinjection moulded thermoplastic polyurethane/multiwalled carbon nanotube composites. Plast. Rubber. Compos. 44: 197–205, https://doi.org/1743289815Y.0000000012.10.1179/1743289815Y.0000000012Suche in Google Scholar

Li, Y. and Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42: 2587–2593, https://doi.org/10.1021/ma802662c.Suche in Google Scholar

Li, W., Zhang, Y., Yang, J., Zhang, J., Niu, Y., and Wang, Z. (2012). Thermal annealing induced enhancements of electrical conductivities and mechanism for multiwalled carbon nanotubes filled poly (ethylene-co-hexene) composites. ACS Appl. Mater. Interfaces 4: 6468–6478, https://doi.org/10.1021/am302597f.Suche in Google Scholar PubMed

Lin, X., Caton-Rose, F., Ren, D., Wang, K., and Coates, P. (2013). Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection molding. J. Polym. Res. 20: 122, https://doi.org/10.1007/s10965-013-0122-8.Suche in Google Scholar

Liu, Z., Chen, Y., Ding, W., and Zhang, C. (2015). Filling behavior, morphology evolution and crystallization behavior of microinjection molded poly (lactic acid)/hydroxyapatite nanocomposites. Compos. Part A 72: 85–95, https://doi.org/10.1016/j.compositesa.2015.02.002.Suche in Google Scholar

Lohr, C., Beck, B., Henning, F., Weidenmann, K.A., and Elsner, P. (2019). Mechanical properties of foamed long glass fiber reinforced polyphenylene sulfide integral sandwich structures manufactured by direct thermoplastic foam injection molding. Compos. Struct. 220: 371–385, https://doi.org/10.1016/j.compstruct.2019.03.056.Suche in Google Scholar

Mamunya, Y.P., Davydenko, V.V., Pissis, P., and Lebedev, E.V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. Eur. Polym. J. 38: 1887–1897, https://doi.org/10.1016/S0014-3057(02)00064-2.Suche in Google Scholar

Mei, J., Lei, X., Liang, M., Wu, H., Zhou, S., Zou, H., and Chen, Y. (2021). Comparative study on the electrical, thermal, and mechanical properties of multiwalled carbon nanotubes filled polypropylene and polyamide 6 micromoldings. J. Appl. Polym. Sci. 138: 49984, https://doi.org/10.1002/app.49984.Suche in Google Scholar

Meister, S. and Drummer, D. (2013). Influence of mold temperature on mold filling behavior and part properties in micro injection molding. Int. Polym. Process. 28: 550–557, https://doi.org/10.3139/217.2804.Suche in Google Scholar

Meister, S., Jungmeier, A., and Drummer, D. (2012). Long-term properties of injection-molded micro-parts: influence of Part Dimensions and cooling conditions on aging behavior. Macromol. Mater. Eng. 297: 994–1004, https://doi.org/10.1002/mame.201100379.Suche in Google Scholar

Muller, J., Huaux, F., and Lison, D. (2006). Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 44: 1048–1056, https://doi.org/10.1016/j.carbon.2005.10.019.Suche in Google Scholar

Pan, Y., Shi, S., Xu, W., Zheng, G., Dai, K., Liu, C., Chen, J., and Shen, C. (2014). Wide distribution of shish-kebab structure and tensile property of micro-injection-molded isotactic polypropylene microparts: a comparative study with injection-molded macroparts. J. Mater. Sci. 49: 1041–1048, https://doi.org/10.1007/s10853-013-7781-z.Suche in Google Scholar

Pötschke, P., Mothes, F., Krause, B., and Voit, B. (2019). Melt-mixed PP/MWCNT composites: influence of CNT incorporation strategy and matrix viscosity on filler dispersion and electrical resistivity. Polymers 11: 189, https://doi.org/10.3390/polym11020189.Suche in Google Scholar PubMed PubMed Central

Prashantha, K., Soulestin, J., Lacrampe, M.F., Krawczak, P., Dupin, G., and Claes, M. (2009). Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos. Sci. Technol. 69: 1756–1763, https://doi.org/10.1016/j.compscitech.2008.10.005.Suche in Google Scholar

Rahate, A.S., Nemade, K.R., and Waghuley, S.A. (2013). Polyphenylene sulfide (PPS): state of the art and applications. Rev. Chem. Eng. 29: 471–489, https://doi.org/10.1515/revce-2012-0021.Suche in Google Scholar

Ramezani Kakroodi, A., Kazemi, Y., and Rodrigue, D. (2015). Effect of conductive particles on the mechanical, electrical, and thermal properties of maleated polyethylene. Polym. Adv. Technol. 26: 362–368, https://doi.org/10.1002/pat.3461.Suche in Google Scholar

Ruan, K., Shi, X., Zhang, Y., Guo, Y., Zhong, X., and Gu, J. (2023). Electric-field-induced alignment of functionalized carbon nanotubes inside thermally conductive liquid crystalline polyimide composite films. Angew. Chem., Int. Ed. 135: e202309010, https://doi.org/10.1002/anie.202309010.Suche in Google Scholar PubMed

Shi, Y., Liang, M., Zou, H., Zhou, S., and Chen, Y. (2020). In situ microfibrillation of polyamide 66 and construction of ordered polytetrafluoroethylene fibers to significantly reduce the friction coefficient of polyphenylene sulfide. Ind. Eng. Chem. Res. 60: 281–290, https://doi.org/10.1021/acs.iecr.0c04802.Suche in Google Scholar

Shi, Y., Liang, M., Wu, H., Chen, Y., Zhou, S., Zou, H., Sun, T., and Zhang, H. (2021a). Hybridization of polytetrafluorethylene fibers and multiscale short carbon fibers to significantly improve the tribological performance of polyphenylene sulfide. Adv. Eng. Mater. 23: 2000787, https://doi.org/10.1002/adem.202000787.Suche in Google Scholar

Shi, Y., Zhou, S., Zou, H., Liang, M., and Chen, Y. (2021b). In situ micro-fibrillization and post annealing to significantly improve the tribological properties of polyphenylene sulfide/polyamide 66/polytetrafluoroethylene composites. Compos B 216: 108841, https://doi.org/10.1016/j.compositesb.2021.108841.Suche in Google Scholar

Shi, Y., Bai, Y., Lei, Y., Zhang, H., Zhou, S., Zou, H., Liang, M., and Chen, Y. (2022). Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure. J. Mater. Sci. Technol. 99: 239–250, https://doi.org/10.1016/j.jmst.2021.05.043.Suche in Google Scholar

Tang, W., Santare, M.H., and Advani, S.G. (2003). Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 41: 2779–2785, https://doi.org/10.1016/S0008-6223(03)00387-7.Suche in Google Scholar

Tarani, E., Papageorgiou, D.G., Valles, C., Wurm, A., Terzopoulou, Z., Bikiaris, D.N., Schick, C., Chrissafis, K., and Vourlias, G. (2018). Insights into crystallization and melting of high density polyethylene/graphene nanocomposites studied by fast scanning calorimetry. Polym. Test. 67: 349–358, https://doi.org/10.1016/j.polymertesting.2018.03.029.Suche in Google Scholar

Thi, T.B.N., Ata, S., Morimoto, T., Kato, Y., Horibe, M., Yamada, T., Okazaki, T., and Hata, K. (2022). Annealing-induced enhancement of electrical conductivity and electromagnetic interference shielding in injection-molded CNT polymer composites. Polymer 245: 124680, https://doi.org/10.1016/j.polymer.2022.124680.Suche in Google Scholar

Thi, T.B.N., Ata, S., Morimoto, T., Okazaki, T., Yamada, T., and Hata, K. (2019). Visualizing electrical network in microinjection-molded CNT polycarbonate composite. Carbon 153: 136–147, https://doi.org/10.1016/j.carbon.2019.07.019.Suche in Google Scholar

Tiusanen, J., Vlasveld, D., and Vuorinen, J. (2012). Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Compos. Sci. Technol. 72: 1741–1752, https://doi.org/10.1016/j.compscitech.2012.07.009.Suche in Google Scholar

Villmow, T., Pötschke, P., Pegel, S., Häussler, L., and Kretzschmar, B. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer 49: 3500–3509, https://doi.org/10.1016/j.polymer.2008.06.010.Suche in Google Scholar

Villmow, T., Kretzschmar, B., and Pötschke, P. (2010). Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos. Sci. Technol. 70: 2045–2055, https://doi.org/10.1016/j.compscitech.2010.07.021.Suche in Google Scholar

Wang, M., Ding, W., Xie, Y., Zhang, L., and Chen, Y. (2021). Effect of micro-mold cavity dimension on structure and property of polylactic acid/polycaprolactone blend under microinjection molding conditions. Polymers 13: 887, https://doi.org/10.3390/polym13060887.Suche in Google Scholar PubMed PubMed Central

Wang, S., Feng, D., Zhang, Z., Liu, X., Ruan, K., Guo, Y., and Gu, J. (2024). Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 42: 897–906, https://doi.org/10.1007/s10118-024-3098-4.Suche in Google Scholar

Xu, H., Xie, L., and Hakkarainen, M. (2015). Beyond a model of polymer processing-triggered shear: reconciling shish-kebab formation and control of chain degradation in sheared poly(l-lactic acid). ACS Sustainable Chem. Eng. 3: 1443–1452, https://doi.org/10.1021/acssuschemeng.5b00320.Suche in Google Scholar

Yang, C., Yin, X.H., and Cheng, G.M. (2013). Microinjection molding of microsystem components: new aspects in improving performance. J. Manuf. Syst. 23: 093001, https://doi.org/10.1088/0960-1317/23/9/093001.Suche in Google Scholar

Yang, L., Su, J., Yang, Q., Zhao, Z., Huang, Y., and Liao, X. (2016). Effective in situ polyamide 6 microfibrils in isotactic polypropylene under microinjection molding: significant improvement of mechanical performance. J. Mater. Sci. 51: 10386–10399, https://doi.org/10.1007/s10853-016-0259-z.Suche in Google Scholar

Yu, S., Wong, W.M., Hu, X., and Juay, Y.K. (2009). The characteristics of carbon nanotube-reinforced poly(phenylene sulfide) nanocomposites. J. Appl. Polym. Sci. 113: 3477–3483, https://doi.org/10.1002/app.30191.Suche in Google Scholar

Zhang, H., Fang, F., Gilchrist, M.D., and Zhang, N. (2019). Precision replication of micro features using micro injection moulding: process simulation and validation. Mater. Des. 177: 107829, https://doi.org/10.1016/j.matdes.2019.107829.Suche in Google Scholar

Zhang, N., Choi, S.Y., and Gilchrist, M.D. (2014). Flow induced crystallization of poly (ether‐block‐amide) from the microinjection molding process and its effect on mechanical properties. Macromol. Mater. Eng. 299: 1362–1383, https://doi.org/10.1002/mame.201300459.Suche in Google Scholar

Zhao, X., Liao, T., Yang, X., Coates, P., Whiteside, B., Barker, D., Thompson, G., Jiang, Z., and Men, Y. (2022a). Mold temperature-and molar mass-dependent structural formation in micro-injection molding of isotactic polypropylene. Polymer 248: 124797, https://doi.org/10.1016/j.polymer.2022.124797.Suche in Google Scholar

Zhao, Z., Yang, Q., Gong, P., Sun, H., Wu, P., Huang, Y., and Liao, X. (2017). Effects of process temperatures on the flow-induced crystallization of isotactic polypropylene/poly (ethylene terephthalate) blends in microinjection molding. Ind. Eng. Chem. Res. 56: 9467–9477, https://doi.org/10.1021/acs.iecr.7b02189.Suche in Google Scholar

Zhao, Z., Yang, Q., Coates, P., Whiteside, B., Kelly, A., Huang, Y.J., and Wu, P.P. (2018). Structure and property of microinjection molded poly (lactic acid) with high degree of long chain branching. Ind. Eng. Chem. Res. 57: 11312–11322, https://doi.org/10.1021/acs.iecr.8b01597.Suche in Google Scholar

Zhao, Z., Shen, S., Li, Y., Zhang, X., Su, J., Li, H., Ai, T., and Tang, D. (2022b). Strain‐sensing behavior of flexible polypropylene/poly (ethylene‐co‐octene)/multiwalled carbon nanotube nanocomposites under cyclic tensile deformation. Polym. Compos. 43: 7–20, https://doi.org/10.1002/pc.26353.Suche in Google Scholar

Zhong, J., Isayev, A.I., and Huang, K. (2014). Influence of ultrasonic treatment in PP/CNT composites using masterbatch dilution method. Polymer 55: 1745–1755, https://doi.org/10.1016/j.polymer.2014.02.014.Suche in Google Scholar

Zhong, J., Isayev, A.I., and Zhang, X. (2016). Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphene nanoplates and carbon black. Eur. Polym. J. 80: 16–39, https://doi.org/10.1016/j.eurpolymj.2016.04.028.Suche in Google Scholar

Zhong, J. and Isayev, A.I. (2016). Ultrasonically assisted compounding of CNT with polypropylenes of different molecular weights. Polymer 107: 130–146, https://doi.org/10.1016/j.polymer.2016.11.006.Suche in Google Scholar

Zhou, S., Du, M., Jariyavidyanont, K., Zhuravlev, E., Zou, H., Androsch, R., Schick, C., Hrymak, A.N., and Zhang, R. (2024). Interplay between chain relaxation time and melt crystallization time in microinjection molding of polyoxymethylene. Macromolecules 57: 5780–5787, https://doi.org/10.1021/acs.macromol.3c02502.Suche in Google Scholar

Zhou, S., Hrymak, A.N., and Kamal, M.R. (2017a). Electrical, morphological and thermal properties of microinjection molded polyamide 6/multi-walled carbon nanotubes nanocomposites. Compos. Part A 103: 84–95, https://doi.org/10.1016/j.compositesa.2017.09.016.Suche in Google Scholar

Zhou, S., Hrymak, A., and Kamal, M. (2017b). Electrical and morphological properties of microinjection molded polypropylene/carbon nanocomposites. J. Appl. Polym. Sci. 134: 45462, https://doi.org/10.1002/app.45462.Suche in Google Scholar

Zhou, S., Hrymak, A.N., and Kamal, M.R. (2018a). Electrical, morphological and thermal properties of microinjection molded polypropylene/multi-walled carbon nanotubes nanocomposites. Int. Polym. Process. 33: 514–524, https://doi.org/10.3139/217.3541.Suche in Google Scholar

Zhou, S., Hrymak, A.N., and Kamal, M.R. (2018b). Properties of microinjection-molded multi-walled carbon nanotubes-filled poly (lactic acid)/poly [(butylene succinate)-co-adipate] blend nanocomposites. J. Mater. Sci. 53: 9013–9025, https://doi.org/10.1007/s10853-018-2193-8.Suche in Google Scholar

Zhou, S., Hrymak, A.N., and Kamal, M.R. (2018c). Microinjection molding of multiwalled carbon nanotubes (CNT)-filled polycarbonate nanocomposites and comparison with electrical and morphological properties of various other CNT‐filled thermoplastic micromoldings. Polym. Adv. Technol. 29: 1753–1764, https://doi.org/10.1002/pat.4282.Suche in Google Scholar

Zhou, S., Hrymak, A.N., and Kamal, M.R. (2020a). Electrical, thermal, and mechanical properties of polypropylene/multiwalled carbon nanotube micromoldings. Polym. Compos. 41: 1507–1520, https://doi.org/10.1002/pc.25474.Suche in Google Scholar

Zhou, S., Hrymak, A.N., Kamal, M.R., and Jiang, R. (2019). Properties of microinjection-molded polypropylene/graphite composites. Polym. Eng. Sci. 59: 1560–1569, https://doi.org/10.1002/pen.25154.Suche in Google Scholar

Zhou, S., Lei, X., Mei, J., Hrymak, A.N., Kamal, M.R., and Zou, H. (2021). Microinjection molding of polyoxymethylene/multiwalled carbon nanotubes composites with different matrix viscosities. J. Appl. Polym. Sci. 138: 49817, https://doi.org/10.1002/app.49817.Suche in Google Scholar

Zhou, S., Shi, Y., Bai, Y., Liang, M., and Zou, H. (2020b). Preparation of thermally conductive polycarbonate/boron nitride composites with balanced mechanical properties. Polym. Compos. 41: 5418–5427, https://doi.org/10.1002/pc.25805.Suche in Google Scholar

Received: 2024-04-09
Accepted: 2024-07-29
Published Online: 2024-09-10
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2024-0053/pdf
Button zum nach oben scrollen