Startseite Analysis and optimization of FFF process parameters to enhance the mechanical properties of 3D printed PLA products
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis and optimization of FFF process parameters to enhance the mechanical properties of 3D printed PLA products

  • Tesfaye Mengesha Medibew und Addisu Negash Ali ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, the combined effects of fused filament fabrication (FFF) process parameters on the mechanical properties of 3D printed PLA products have been determined by focusing on the tensile strength at R 2 (97.29%). ASTM D638 test standard is used for the preparation of specimens for tensile tests. The optimization technique has been used to determine the optimal combinations of FFF process parameters for the validation of experimental tensile tests and computational fluid dynamics (CFD) simulations. From the results obtained the optimum cooling fan speed of 79.3%, extrusion temperature of 214.4 °C, printing speed of 75.9 mm/s, raster width of 0.4814 mm, and shell number 5 were determined with a 2.266% error of the tensile strength (45.06 MPa). SEM morphology examination shows that the fabricated part cooled at 80% cooling fan speed illustrates good inter-layer bond strength which is also confirmed by CFD temperature distributions analysis.


Corresponding author: Addisu Negash Ali, Faculty of Mechanical and Industrial Engineering, Bahir Dar Institute of Technology, Bahir Dar University, P.O. Box 26, Bahir Dar, Ethiopia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abeykoon, C., Sri-Amphorn, P., and Fernando, A. (2020). Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Lightweight Mater. Manuf. 3: 284–297, https://doi.org/10.1016/j.ijlmm.2020.03.003.Suche in Google Scholar

Aguilar-Duque, J.I., Hernández-Arellano, J.L., Avelar-Sosa, L., Amaya-Parra, G., and Tamayo-Pérez, U.J. (2019). Additive manufacturing: fused deposition modeling advances. In: García Alcaraz, J.L., Rivera Cadavid, L., González-Ramírez, R.G., Leal Jamil, G., and Chong Chong, M.G. (Eds.), Best practices in manufacturing processes: Experiences from Latin America. Springer International Publishing, Cham, pp. 347–366.10.1007/978-3-319-99190-0_16Suche in Google Scholar

Ali, A.N. and Huang, S.-J. (2019). Ductile fracture behavior of ECAP deformed AZ61 magnesium alloy based on response surface methodology and finite element simulation. Mater. Sci. Eng., A 746: 197–210.10.1016/j.msea.2019.01.036Suche in Google Scholar

Andó, M., Birosz, M., and Jeganmohan, S. (2021). Surface bonding of additive manufactured parts from multi-colored PLA materials. Measurement 169: 108583.10.1016/j.measurement.2020.108583Suche in Google Scholar

ASTM International (2014). Standard test method for tensile properties of plastics. ASTM International, USA.Suche in Google Scholar

Ayatollahi, M.R., Nabavi-Kivi, A., Bahrami, B., Yazid Yahya, M., and Khosravani, M.R. (2020). The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Eng. Fract. Mech. 237: 107225, https://doi.org/10.1016/j.engfracmech.2020.107225.Suche in Google Scholar

Boukhanouf, R. and Haddad, A. (2010). A CFD analysis of an electronics cooling enclosure for application in telecommunication systems. Appl. Therm. Eng. 30: 2426–2434, https://doi.org/10.1016/j.applthermaleng.2010.06.012.Suche in Google Scholar

Brischetto, S. and Torre, R. (2020). Tensile and compressive behavior in the experimental tests for PLA specimens produced via fused deposition modelling technique. J. Compos. Sci. 4: 140, https://doi.org/10.3390/jcs4030140.Suche in Google Scholar

Coogan, T.J. and Kazmer, D.O. (2017). Bond and part strength in fused deposition modeling. Rapid Prototyp. J. 23: 414–422, https://doi.org/10.1108/RPJ-03-2016-0050.Suche in Google Scholar

Coogan, T.J. and Kazmer, D.O. (2020). Prediction of interlayer strength in material extrusion additive manufacturing. Addit. Manuf. 35: 101368.10.1016/j.addma.2020.101368Suche in Google Scholar

Costa, A.E., da Silva, A.F., and Carneiro, O.S. (2018). A study on extruded filament bonding in fused filament fabrication. Rapid Prototyp. J. 25: 555–565, https://doi.org/10.1108/RPJ-03-2018-0062.Suche in Google Scholar

Daminabo, S.C., Goel, S., Grammatikos, S.A., Nezhad, H.Y., and Thakur, V.K. (2020). Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater. Today Chem. 16: 100248, https://doi.org/10.1016/j.mtchem.2020.100248.Suche in Google Scholar

Deshwal, S., Kumar, A., and Chhabra, D. (2020). Exercising hybrid statistical tools GA-RSM, GA-ANN and GA-ANFIS to optimize FDM process parameters for tensile strength improvement. CIRP J. Manuf. Sci. Technol. 31: 189–199, https://doi.org/10.1016/j.cirpj.2020.05.009.Suche in Google Scholar

Dey, A. and Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics. J. Manuf. Mater. Process. 3: 64, https://doi.org/10.3390/jmmp3030064.Suche in Google Scholar

Dhinakaran, V., Manoj Kumar, K.P., Bupathi Ram, P.M., Ravichandran, M., and Vinayagamoorthy, M. (2020). A review on recent advancements in fused deposition modeling. Mater. Today Proc. 27: 752–756, https://doi.org/10.1016/j.matpr.2019.12.036.Suche in Google Scholar

Diegel, O., Nordin, A., and Motte, D. (2019). Additive manufacturing technologies. Springer, Singapore.10.1007/978-981-13-8281-9_2Suche in Google Scholar

Enemuoh, E.U., Duginski, S., Feyen, C., and Menta, V.G. (2021). Effect of process parameters on energy consumption, physical, and mechanical properties of fused deposition modeling. Polymers 13: 2406, https://doi.org/10.3390/polym13152406.Suche in Google Scholar PubMed PubMed Central

Escobedo, J., Rivera, A., Guzmán-Valdivia, C., Ruiz, M., and Orenday, O. (2016). CFD analysis for improving temperature distribution in a chili dryer. Therm. Sci. 22: 255, https://doi.org/10.2298/TSCI160112255E.Suche in Google Scholar

Fountas, N.A., Kostazos, P., Pavlidis, H., Antoniou, V., Manolakos, D.E., and Vaxevanidis, N.M. (2020). Experimental investigation and statistical modelling for assessing the tensile properties of FDM fabricated parts. Procedia Struct. Integr. 26: 139–146, https://doi.org/10.1016/j.prostr.2020.06.017.Suche in Google Scholar

Gebhardt, A. and Hötter, J.-S. (2016). Additive manufacturing: 3D printing for prototyping and manufacturing. Hanser 35: 591.10.3139/9781569905838Suche in Google Scholar

Günay, M., Gündüz, S., Yılmaz, H., Yaşar, N., and Kaçar, R. (2020). Optimization of 3D printing operation parameters for tensile strength PLA based sample. J. Polytech. 23: 73–79.10.2339/politeknik.422795Suche in Google Scholar

Heidari-Rarani, M., Ezati, N., Sadeghi, P., and Badrossamay, M.R. (2020). Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. J. Thermoplast. Compos. Mater. XX, https://doi.org/10.1177/0892705720964560.Suche in Google Scholar

Huang, S.-J. and Ali, A.N. (2018). Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater. Sci. Eng., A 711: 670–682.10.1016/j.msea.2017.11.020Suche in Google Scholar

Huang, T., Wang, S., and He, K. (2015). Quality control for fused deposition modeling based additive manufacturing: current research and future trends. 2015 first international conference on reliability systems engineering (ICRSE). 21–23 Oct. 2015. IEEE, Bejing, pp. 1–6.10.1109/ICRSE.2015.7366500Suche in Google Scholar

Hur, K.H., Haider, B.A., and Sohn, C.H. (2020). A numerical investigation on the performance improvement of axial-flow automotive cooling fan with beads. J. Mech. Sci. Technol. 34: 3317–3323, https://doi.org/10.1007/s12206-020-0724-0.Suche in Google Scholar

Javaid, M. and Haleem, A. (2020). 3D printed tissue and organ using additive manufacturing: an overview. Clin. Epidemiol. Global Health 8: 586–594, https://doi.org/10.1016/j.cegh.2019.12.008.Suche in Google Scholar

Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N., and Rahaman, A. (2021). Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Prog. Addit. Manuf. 6: 63–69, https://doi.org/10.1007/s40964-020-00145-3.Suche in Google Scholar

Khabia, S. and Jain, K.K. (2019). Comparison of mechanical properties of components 3D printed from different brand ABS filament on different FDM printers. Mater. Today Proc. 26: 2907–2914, https://doi.org/10.1016/j.matpr.2020.02.600.Suche in Google Scholar

Kiendl, J. and Gao, C. (2020). Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Compos. B Eng. 180: 107562, https://doi.org/10.1016/j.compositesb.2019.107562.Suche in Google Scholar

Kleiber, M. (1972). A new Newton’s law of cooling? Science 178: 1283–1285.10.1126/science.178.4067.1283Suche in Google Scholar PubMed

Lee, C.-Y. and Liu, C.-Y. (2019). The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Addit. Manuf. 25: 196–203.10.1016/j.addma.2018.11.012Suche in Google Scholar

Lee, M., Park, G., Park, C., and Kim, C. (2020). Improvement of grid independence test for computational fluid dynamics model of building based on grid resolution. Adv. Civ. Eng. 2020: 8827936, https://doi.org/10.1155/2020/8827936.Suche in Google Scholar

Mandge, V., Patel, D.M., and Patil, H.G. (2020). Experimental investigation to optimise FDM process parameters for ABS material using RSM. REST J. Emerg. Trends Model. Manuf. 6: 27–34, https://doi.org/10.46632/6/1/5.Suche in Google Scholar

Manoharan, K., Chockalingam, K., and Ram, S.S. (2020). Prediction of tensile strength in fused deposition modeling process using artificial neural network technique. AIP Conf. Proc. 2311: 080012, https://doi.org/10.1063/5.0034016.Suche in Google Scholar

Miazio, Ł. (2019). Impact of print speed on strength of samples printed in FDM technology. Agric. Eng. 23: 33–38.10.1515/agriceng-2019-0014Suche in Google Scholar

Mishra, P. and Aharwal, K.R. (2018). A review on selection of turbulence model for CFD analysis of air flow within a cold storage. IOP Conf. Ser. Mater. Sci. Eng. 402: 012145.10.1088/1757-899X/402/1/012145Suche in Google Scholar

Mohanty, A., Nag, K.S., Bagal, D.K., Barua, A., Jeet, S., Mahapatra, S.S., and Cherkia, H. (2021). Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimization technique. Mater. Today Proc. 50: 893–903, https://doi.org/10.1016/j.matpr.2021.06.216.Suche in Google Scholar

Mohd Pu’ad, N.A.S., Abdul Haq, R.H., Mohd Noh, H., Abdullah, H.Z., Idris, M.I., and Lee, T.C. (2019). Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Mater. Today Proc. 29: 228–232, https://doi.org/10.1016/j.matpr.2020.05.535.Suche in Google Scholar

Mutyala, R.S., Park, K., Günay, E.E., Kim, G., Lau, S., Jackman, J., and Okudan Kremer, G.E. (2022). Effect of FFF process parameters on mechanical strength of CFR-PEEK outputs. Int. J. Interact. Des. Manuf. 16: 1–12.10.1007/s12008-022-00944-8Suche in Google Scholar

Nidagundi, V.B., Keshavamurthy, R., and Prakash, C.P.S. (2015). Studies on parametric optimization for fused deposition modelling process. Mater. Today Proc. 2: 1691–1699.10.1016/j.matpr.2015.07.097Suche in Google Scholar

Ozsoy, K. and Duman, B. (2020). Metal part production with additive manufacturing for aerospace and defense industry. Int. J. Technol. Sci. 11: 201–211.Suche in Google Scholar

Popescu, D., Zapciu, A., Amza, C., Baciu, F., and Marinescu, R. (2018). FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polym. Test. 69: 157–166, https://doi.org/10.1016/j.polymertesting.2018.05.020.Suche in Google Scholar

Rayegani, F. and Onwubolu, G.C. (2014). Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int. J. Adv. Manuf. Technol. 73: 509–519.10.1007/s00170-014-5835-2Suche in Google Scholar

Sagbas, B. (2017). Additive manufacturing of biomedical implants. 1st annual international conference on mechanical engineering, Athens, Conference paper, pp. 2–15.Suche in Google Scholar

Shelton, T.E., Willburn, Z.A., Hartsfield, C.R., Cobb, G.R., Cerri, J.T., and Kemnitz, R.A. (2020). Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085. Polym. Test. 81: 106255.10.1016/j.polymertesting.2019.106255Suche in Google Scholar

Solomon, I.J., Sevvel, P., and Gunasekaran, J. (2020). A review on the various processing parameters in FDM. Mater. Today Proc. 37: 509–514, https://doi.org/10.1016/j.matpr.2020.05.484.Suche in Google Scholar

Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S., and Hao, W. (2020). Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Compos. C Open Access 3: 100076, https://doi.org/10.1016/j.jcomc.2020.100076.Suche in Google Scholar

Teixeira, S., Eblagon, K., Miranda, F., Pereira, M., and Figueiredo, J. (2021). Towards controlled degradation of poly(lactic) acid in technical applications. C 7: 42, https://doi.org/10.3390/c7020042.Suche in Google Scholar

Vǎlean, C., Marşavina, L., Mǎrghitaşl, M., Linul, E., Razavi, J., and Berto, F. (2020). Effect of manufacturing parameters on tensile properties of FDM printed specimens. Procedia Struct. Integr. 26: 313–320, https://doi.org/10.1016/j.prostr.2020.06.040.Suche in Google Scholar

Valvez, S., Santos, P., Parente, J.M., Silva, M.P., and Reis, P.N.B. (2020). 3D printed continuous carbon fiber reinforced PLA composites: a short review. Procedia Struct. Integr. 25: 394–399.10.1016/j.prostr.2020.04.056Suche in Google Scholar

Vanaei, H.R., Raissi, K., Deligant, M., Shirinbayan, M., Fitoussi, J., Khelladi, S., and Tcharkhtchi, A. (2020). Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. J. Mater. Sci. 55: 14677–14689, https://doi.org/10.1007/s10853-020-05057-9.Suche in Google Scholar

Vanaei, H.R., Shirinbayan, M., Costa, S.F., Duarte, F.M., Covas, J.A., Deligant, M., Khelladi, S., and Tcharkhtchi, A. (2021). Experimental study of PLA thermal behavior during fused filament fabrication. J. Appl. Polym. Sci. 138: 1–7, https://doi.org/10.1002/app.49747.Suche in Google Scholar

Vardhan, H., Kumar, R., and Chohan, J.S. (2019). Investigation of tensile properties of sprayed aluminium based PLA composites fabricated by FDM technology. Mater. Today Proc. 33: 1599–1604, https://doi.org/10.1016/j.matpr.2020.05.335.Suche in Google Scholar

Wang, S., Ma, Y., Deng, Z., Zhang, S., and Cai, J. (2020). Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 86: 106483, https://doi.org/10.1016/j.polymertesting.2020.106483.Suche in Google Scholar

Waseem, M., Salah, B., Habib, T., Saleem, W., Abas, M., Khan, R., Ghani, U., and Siddiqi, M.U.R. (2020). Multi-response optimization of tensile creep behavior of PLA 3D printed parts using categorical response surface methodology. Polymers 12: 1–16, https://doi.org/10.3390/polym12122962.Suche in Google Scholar PubMed PubMed Central

Wimpenny, D.I., Pandey, P.M., and Jyothish Kumar, L. (Eds.) (2016). Advances in 3D printing & additive manufacturing technologies. Springer, Singapore, pp. 1–186.10.1007/978-981-10-0812-2Suche in Google Scholar

Wu, C.J. and Hamada, M.S. (2011). Experiments: planning, analysis, and optimization. John Wiley & Sons, USA.Suche in Google Scholar

Yadav, D.K., Srivastava, R., and Dev, S. (2019). Design & fabrication of ABS part by FDM for automobile application. Mater. Today Proc. 26: 2089–2093, https://doi.org/10.1016/j.matpr.2020.02.451.Suche in Google Scholar

Yao, T., Ye, J., Deng, Z., Zhang, K., Ma, Y., and Ouyang, H. (2020). Tensile failure strength and separation angle of FDM 3D printing PLA material: experimental and theoretical analyses. Compos. B Eng. 188: 107894, https://doi.org/10.1016/j.compositesb.2020.107894.Suche in Google Scholar

Received: 2022-05-17
Accepted: 2022-09-16
Published Online: 2022-10-18
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-4237/pdf
Button zum nach oben scrollen