Micro-Injection Molding of Polymer Nanocomposites Composition-Process-Properties Relationship
-
Z. Dekel
und S. Kenig
Abstract
The mechanical, electrical, thermal, and rheological properties of micro injection molded nanocomposites comprising 2% and 5% carbon nanotubes (CNTs) incorporated in polycarbonate (PC), and polyamide 66 (PA) were studied. The design of experiments method was used to investigate the composition-process – properties relationship. Results indicated that the process variables significantly affected the flow patterns and resulting morphology during the filling stage of the microinjection molding (lIM) process, using 0.45 mm diameter lIM samples. Two distinct flow regimes have been identified in lIM using the low cross-section samples. The first was a conventional “fountain flow,” which resulted in a skin/core structure and reduced volume resistivity up to 10 X cm in the case of 5% CNTs and up to 100 X cm in 2% CNTs, in both polymers, respectively. In addition, inferior mechanical properties were obtained, attributed to polymer degradation under high shear rate conditions, when practicing high injection speeds, high mold temperatures, and high screw rotation velocities. The second was a “plug flow” due to wall slippage, obtained under low injection speeds, low mold temperatures, and low rotation velocities, leading to a substantial increase in modulus of elasticity (60%) with increased electrical resistivity up to 103 X cm for 5% CNTs and 105 X cm for 2% CNTs, respectively. The rheological percolation threshold was obtained at 2% CNTs while the electrical threshold was attained at 0.4% CNTs, in both polymers. It was concluded that in lIM, the process conditions should be closely monitored. In the case of high viscous heating, degradation of mechanical properties was obtained, while skin- core morphology formation enhanced electrical conductivity.
References
Abbasi, S., Carreau, P. J. and Derdouri, A.,“Flow Induced Orientation of Multiwalled Carbon Nanotubes in Polycarbonate Nanocomposites: Rheology, Conductivity and Mechanical Properties”, Polymer, 51, 922–935 (2010), DOI:10.1016/j.polymer.2009.12.04110.1016/j.polymer.2009.12.041Suche in Google Scholar
Abbasi, S., Derdouri, A. and Carreau, P. J., “Properties of Microinjection Molding of Polymer Multiwalled Carbon Nanotube Conducting Composites”, Polym. Eng. Sci., 51, 992–1003 (2011), DOI:10.1002/pen.2190410.1002/pen.21904Suche in Google Scholar
Anass, B., Boutaous, M., El Otmani, R., El Hakimi, A., Touache, A., Musa, K. R., Derdouri, S., Refaa, Z. and Siginer, D. A., “Simulation of Crystallization Evolution of Polyoxymethylene during Microinjection Molding Cycle”, Polym. Adv. Technol., 31, 838–852 (2020), DOI:10.1002/pat.481910.1002/pat.4819Suche in Google Scholar
Bauer, H.-D., Ehrfeld, W., Hossfeld, J. and Paatzsch, T., “Manufacturing Microcomponents for Optical Information Technology Using the LIGA Technique”, Optical Fabrication and Testing, 3739, 224–229 (1999), DOI:10.1117/12.36014810.1117/12.360148Suche in Google Scholar
Black, W. B., Graham, M. D., “Effect of Wall Slip on the Stability of Viscoelastic Plane Shear Flow”, Physics of Fluids, 11, 1949–1956 (1999), DOI:10.1063/1.87004010.1063/1.870040Suche in Google Scholar
Chien, R.-D., Jong, W.-R. and Chen, S.-C., “Study on Rheological Behavior of Polymer Melt Flowing through Micro-Channels Considering the Wall-Slip Effect”, J. Micromech. Microeng., 15, 1389 – 1396 (2005), DOI:10.1088/0960-1317/15/8/00310.1088/0960-1317/15/8/003Suche in Google Scholar
El Otmani, R., Kandoussi, K., Kamal, M. R., Derdouri, S. and Boutaous, M., “Morphology and Flow Effect of Microinjection-Molded Plastic Microgears”, Polym. Adv. Technol., 28, 511–515 (2017), DOI:10.1002/pat.394610.1002/pat.3946Suche in Google Scholar
Hu, G.-J., Zhao, C.-G., Zhang, S.-M., Yang, M.-S. and Wang, Z.-G., “Low Percolation Thresholds of Electrical Conductivity and Rheology in Poly(ethylene terephthalate) through the Networks of Multi-Walled Carbon Nanotubes”, Polymer, 47, 480–488 (2006), DOI:10.1016/j.polymer.2005.11.02810.1016/j.polymer.2005.11.028Suche in Google Scholar
Joshi, Y. M., Lele, A. K. and Mashelkar, R. A., “A Unified Wall Slip Model”, J. Non-Newtonian Fluid Mech., 94, 135–149 (2000), DOI:10.1016/S0377-0257(00)00160-910.1016/S0377-0257(00)00160-9Suche in Google Scholar
Krause, B., Boldt, R., Häußler, L. and Pötschke, P., “Ultralow Percolation Threshold in Polyamide 6.6/MWCNT Composites”, Compos. Sci. Technol., 114, 119–125 (2015), DOI:10.1016/j.compscitech.2015.03.01410.1016/j.compscitech.2015.03.014Suche in Google Scholar
Lin, S.-Y., Chen,E.-C., Liu, K.-Y. and Wu, T.M., “Isothermal Crystallization Behavior of Polyamide 6,6/Multiwalled Carbon Nanotube Nanocomposites”, Polym. Eng. Sci., 49, 2447–2453 (2009), DOI:10.1002/pen.2149510.1002/pen.21495Suche in Google Scholar
Liu, Z., Chen, Y.-H., Ding, W.-W. and Zhang, C.-H., “Filling Behavior, Morphology Evolution and Crystallization Behavior of Micro-injection Molded Poly(lactic acid)/Hydroxyapatite Nanocomposites”, Composites, Part A, 72, 85–95 (2015), DOI:10.1016/j.compositesa.2015.02.00210.1016/j.compositesa.2015.02.002Suche in Google Scholar
Martins, J. N., Bassani, T. S., Barra, G. M. O. and Oliveira, R. V. B., “Electrical and Rheological Percolation in Poly(vinylidene fluoride)/Multi-Walled Carbon Nanotube Nanocomposites”, Polym. Int., 60, 430–435 (2011), DOI:10.1002/pi.296510.1002/pi.2965Suche in Google Scholar
McNally, T., Potschke, P.: Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications, Woodhead Publishing Limited, Cambridge (2011)10.1533/9780857091390Suche in Google Scholar
Niggemann, M., Ehrfeld, W. and Weber, L., “Fabrication of Miniaturized Biotechnical Devices”, Proceeding SPIE 3511, Micromachining and Microfabrication Process Technology IV, 204–213 (1998), DOI:10.1117/12.32430310.1117/12.324303Suche in Google Scholar
Pan, Y.-Z., Li, L., “Percolation and Gel-Like Behavior of Multiwalled Carbon Nanotube/Polypropylene Composites Influenced by Nanotube Aspect Ratio”, Polymer (United Kingdom), 54, 1218–1226 (2013), DOI:10.1016/j.polymer.2012.12.05810.1016/j.polymer.2012.12.058Suche in Google Scholar
Pantani, R., Coccorullo, I., Speranza, V. and Titomanlio, G., “Modeling of Morphology Evolution in the Injection Molding Process of Thermoplastic Polymers”, Prog. Polym. Sci., 30, 1185–1222 (2005), DOI:10.1016/j.progpolymsci.2005.09.00110.1016/j.progpolymsci.2005.09.001Suche in Google Scholar
Penu, C., Hu, G.-H., Fernandez, A., Marchal, P. and Choplin, L., “Rheological and Electrical Percolation Thresholds of Carbon Nanotube/Polymer Nanocomposites”, Polym. Eng. Sci., 52, 2173 – 2181 (2012), DOI:10.1002/pen.2316210.1002/pen.23162Suche in Google Scholar
Ribeiro, B., Pipes, R., Costa, M. and Botelho, E., “Electrical and Rheological Percolation Behavior of Multiwalled Carbon Nanotube-Reinforced Poly(phenylene sulfide) Composites”, J. Compos. Mater., 51, 199–208 (2016), DOI:10.1177/002199831664484810.1177/0021998316644848Suche in Google Scholar
Rosenbaum, E. E., Hatzikiriakos, S. G., “Wall Slip in the Capillary Flow of Molten Polymers Subject to Viscous Heating” AIChE J., 43, 598–608 (1997);, DOI:10.1002/aic.69043030510.1002/aic.690430305Suche in Google Scholar
Tadmor, Z., “Molecular Orientation in Injection Molding”, J. Appl. Polym. Sci., 18, 1753–1772 (1974), DOI:10.1002/app.1974.07018061410.1002/app.1974.070180614Suche in Google Scholar
Tiusanen, J., Vlasveld, D. and Vuorinen, J., “Review on the Effects of Injection Moulding Parameters on the Electrical Resistivity of Carbon Nanotube Filled Polymer Parts”, Compos. Sci. Technol., 72, 1741–1752 (2012), DOI:10.1016/j.compscitech.2012.07.00910.1016/j.compscitech.2012.07.009Suche in Google Scholar
Zhao, D.-Y., Jin, Y.-F. and Wang, M.-J., “Study on Viscosity of Polymer Melt Flowing through Microchannels Considering the Wall-Slip Effect”, Polym. Eng. Sci., 52, 1806–1814 (2012), DOI:10.1002/pen.2311310.1002/pen.23113Suche in Google Scholar
Zhou, S.-T., Hrymak, A. and Kamal, M. R., “Electrical and Morphological Properties of Microinjection Molded Polypropylene/Carbon Nanocomposites”, J. Appl. Polym. Sci., 134, 45462 (2017), DOI:10.1002/app.4546210.1002/app.45462Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Editorial
- Special Issue for Musa R. Kamal
- Special issue contributions
- Constitutive Modeling of Nonlinear Rheological Behavior of Carbon Nanotube-Filled Polypropylene Nanocomposites
- Modeling Short-Range Interactions in Concentrated Newtonian Fiber Bundle Suspensions
- The Polymer Film Casting Process – An Overview
- Micro-Injection Molding of Polymer Nanocomposites Composition-Process-Properties Relationship
- Nanoclay Migration and the Rheological Response of PBAT/LDPE Blends
- Composites of Cysteamine Functionalised Graphene Oxide and Polypropylene
- Effect of Uniaxial Stretching on Molecular Orientation, Crystallinity and Oxygen Permeability of Ethylene Vinyl Alcohol
- Investigation of Microstructures and Air Permeability of Aerogel-Coated Textile Fabric Materials
- In Situ Visualization for Control of Nano-Fibrillation Based on Spunbond Processing Using a Polypropylene/Polyethylene Terephthalate System
- PPS NEWS
- Seikei Kakou Abstracts
- PPS Membership application
Artikel in diesem Heft
- Contents
- Editorial
- Special Issue for Musa R. Kamal
- Special issue contributions
- Constitutive Modeling of Nonlinear Rheological Behavior of Carbon Nanotube-Filled Polypropylene Nanocomposites
- Modeling Short-Range Interactions in Concentrated Newtonian Fiber Bundle Suspensions
- The Polymer Film Casting Process – An Overview
- Micro-Injection Molding of Polymer Nanocomposites Composition-Process-Properties Relationship
- Nanoclay Migration and the Rheological Response of PBAT/LDPE Blends
- Composites of Cysteamine Functionalised Graphene Oxide and Polypropylene
- Effect of Uniaxial Stretching on Molecular Orientation, Crystallinity and Oxygen Permeability of Ethylene Vinyl Alcohol
- Investigation of Microstructures and Air Permeability of Aerogel-Coated Textile Fabric Materials
- In Situ Visualization for Control of Nano-Fibrillation Based on Spunbond Processing Using a Polypropylene/Polyethylene Terephthalate System
- PPS NEWS
- Seikei Kakou Abstracts
- PPS Membership application