Home Constitutive Modeling of Nonlinear Rheological Behavior of Carbon Nanotube-Filled Polypropylene Nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Constitutive Modeling of Nonlinear Rheological Behavior of Carbon Nanotube-Filled Polypropylene Nanocomposites

  • S. S. Pole , A. I. Isayev and J. Zhong
Published/Copyright: July 7, 2021
Become an author with De Gruyter Brill

Abstract

The rheological behavior of multi-walled carbon nanotube (MWCNT)-filled polypropylene (PP) nanocomposites with different filler loadings was experimentally studied and simulated using constitutive modeling. Rheological behavior was characterized in small amplitude oscillatory shear (SAOS) flow, large amplitude oscillatory shear (LAOS) flow, startup of shear flow, steady shear flow, and stress relaxation after the imposition of a step shear strain. Virgin PP and PP with CNT loadings of 1, 3, and 5 wt% were used. The formation of a rheological percolation network was observed at these loadings. The Leonov and Simhambhatla-Leonov models were used to simulate the rheological behavior. In the linear region, the simulations provided good predictions of the experimental data for both the unfilled and filled PP. In the nonlinear region, the simulations also provided good results for the virgin PP and satisfactory results for the PP/1 wt%CNT nanocomposite under most flow conditions. However, for the other two nanocomposites the model showed mixed results.


Avraam I. Isayev, Department of Polymer Engineering, University of Akron, Akron, OH 44325

References

Ajayan, P. M., Stephan, O., Colliex, C. and Trauth, D., “Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite", Science, 265, 1212–1214 (1994), DOI:10.1126/science.265.5176.121210.1126/science.265.5176.1212Search in Google Scholar PubMed

Al-Hadithi, T. S. R., Barnes, H. A. and Walters, K., “The Relationship between the Linear (Oscillatory) and Nonlinear (Steady-State) Flow Properties of a Series of Polymer and Colloidal Systems”, Colloid Polym. Sci., 270, 40–46 (1992), DOI:10.1007/BF0065692710.1007/BF00656927Search in Google Scholar

Andrews, R., Weisenberger, M. C., “Carbon Nanotube Polymer Composites”, Curr. Opin. Solid State Mater. Sci., 8, 31–37 (2004), DOI:10.1016/j.cossms.2003.10.00610.1016/j.cossms.2003.10.006Search in Google Scholar

Baaijens, F. P. T., “Calculation of Residual Stresses in Injection Molded Products”, Rheol. Acta, 30, 284–299 (1991), DOI:10.1007/BF0036664210.1007/BF00366642Search in Google Scholar

Baaijens, F. P. T., Douven, L. F. A., “Calculation of Flow-Induced Residual Stresses in Injection Moulded Products”, Appl. Sci. Res., 48, 141–157 (1994), DOI:10.1007/BF0202796410.1007/BF02027964Search in Google Scholar

Balow, M. J., “Chapter 1 Global Trends for Polypropylene”, in Handbook of Polypropylene and Polypropylene Composites, Karian, H. G. (Ed.), CRC Press, New York (2003), DOI:10.1201/9780203911808.ch110.1201/9780203911808.ch1Search in Google Scholar

Berber, S., Kwon, Y. K. and Tomanek, D., “Unusually High Thermal Conductivity of Carbon Nanotubes”, Phys. Rev. Lett., 84, 4613 – 4616 (2000), PMid:10990753; DOI:10.1103/PhysRevLett.84.461310.1103/PhysRevLett.84.4613Search in Google Scholar PubMed

Bikiaris, D., “Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites”, Materials, 3, 2884–2946 (2010), DOI:10.3390/ma304288410.3390/ma3042884Search in Google Scholar

Carrot, C., Majesteí, J.C., Olalla, B. and Fulchiron, R., “On the Use of the Model Proposed by Leonov for the Explanation of a Secondary Plateau of the Loss Modulus in Heterogeneous Polymer–Filler Systems with Agglomerates”, Rheol. Acta, 49, 513–527 (2010), DOI:10.1007/s00397-010-0432-210.1007/s00397-010-0432-2Search in Google Scholar

Chatterjee, T., Krishnamoorti, R., “Rheology of Polymer Carbon Nanotubes Composites”, Soft Matter, 9, 9515–9529 (2013), PMid:26029757; DOI:10.1039/c3sm51444g10.1039/c3sm51444gSearch in Google Scholar PubMed

Coussot, P., Leonov, A. I. and Piau, J. M., “Rheology of Concentrated Dispersed System in a Low Molecular Weight Matrix”, J. Non-Newtonian Fluid Mech., 46, 179–217 (1993), DOI:10.1016/0377-0257(93)85046-D10.1016/0377-0257(93)85046-DSearch in Google Scholar

Cox, W. P., Merz, E. H., “Correlation of Dynamic and Steady Flow Viscosities”, J. Polym. Sci., 28, 619–622 (1958), DOI:10.1002/pol.1958.120281181210.1002/pol.1958.1202811812Search in Google Scholar

Danesh, M., Mauran, D., Hojabr, S., Berry, R., Pawlik, M. and Hatzikiriakos, S. G., “Yielding of Cellulose Nanocrystal Suspensions in the Presence of Electrolytes”, Phys. Fluids, 32, 093103–1–14 (2020), DOI:10.1063/5.002591610.1063/5.0025916Search in Google Scholar

Dealy, J. M., Wissbrun, K. F.: Melt Rheology and its Role in Plastics Processing: Theory and Applications, Van Nostrand Reinhold, New York (1990), DOI:10.1007/978-94-009-2163-410.1007/978-94-009-2163-4Search in Google Scholar

Debbaut, B., “Numerical Simulation of Elastic Recovery for Uncured Rubber Compound with a Multi-Mode Simhambhatla–Leonov Model”, Chem. Eng. Sci., 64, 4580–4587 (2009), DOI:10.1016/j.ces.2009.01.03310.1016/j.ces.2009.01.033Search in Google Scholar

Ding, R., Leonov, A. I., “An Approach to Chemorheology of a Filled SBR Compound”, Rubber Chem. Technol., 72, 361–383 (1999), DOI:10.5254/1.353880810.5254/1.3538808Search in Google Scholar

Doraiswamy, D., Majumdar, A. N., Tsao, I., Beris, A. N., Danforth, S. C. and Metzner, A. B., “The Cox-Merz Rule Extended: A Rheological Model for Concentrated Suspensions and Other Materials with a Yield Stress”, J. Rheol., 35, 647–685 (1991), DOI:10.1122/1.55018410.1122/1.550184Search in Google Scholar

Ebbesen, T. W., Ajayan, P. M., “Large-Scale Synthesis of Carbon Nanotubes”, Nature, 358, 220–222 (1992), DOI:10.1038/358220a010.1038/358220a0Search in Google Scholar

Fan, Z., Advani, S., “Rheology of Multiwall Carbon Nanotube suspensions”, J. Rheol., 51, 585–604 (2007), DOI:10.1122/1.273642410.1122/1.2736424Search in Google Scholar

Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassel, A. M. and Dai, H., “Self-Oriented Regular Arrays of Carbon Nanotubes and their Field Emission Properties”, Science, 283, 512–514 (1999), DOI:10.1126/science.283.5401.51210.1126/science.283.5401.512Search in Google Scholar PubMed

Frank, S., Poncharal, P., Wang, Z. L. and Heer, W. A., “Carbon Nanotube Quantum Resistors”, Science, 280, 1744–1746 (1998), DOI:10.1126/science.280.5370.174410.1126/science.280.5370.1744Search in Google Scholar

Friend, R. H.: Conductive Polymers II – From Science to Applications, Vol. 6, Rapra Technology Ltd., Oxford (1993)Search in Google Scholar

Ghahramani, N., Iyer, K. A., Doufas, A. K. and Hatzikiriakos S. G., “Rheology of Thermoplastic Vulcanizates (TPVs)”, J. Rheol., 64, 1325–1341 (2020), DOI:10.1122/8.000010810.1122/8.0000108Search in Google Scholar

Giesekus, H., “A Simple Constitutive Equation for Polymer Fluids Based on the Concept of Deformation Dependent Tensorial Mobility”, J. Non-Newtownian Fluid Mech., 11, 69–109 (1982), DOI:10.1016/0377-0257(82)85016-710.1016/0377-0257(82)85016-7Search in Google Scholar

Gupta, M., Hieber, C. A. and Wang, K. K., “Viscoelastic Modeling of Entrance Flow”, Int. J. Num. Methods in Fluids, 24, 493–517 (1997), DOI:10.1002/(SICI)1097-0363(19970315)24:5<493::AID-FLD502>3.0.CO;2-W10.1002/(SICI)1097-0363(19970315)24:5<493::AID-FLD502>3.0.CO;2-WSearch in Google Scholar

Havet, G., Isayev, A. I., “A Thermodynamic Approach to the Rheology of Highly Interactive Filler-Polymer Mixtures. Part I. Theory”, Rheol. Acta, 40, 570–581 (2001), DOI:10.1007/s00397010017610.1007/s003970100176Search in Google Scholar

Havet, G., Isayev, A. I., “A Thermodynamic Approach to the Rheology of Highly Interactive Filler-Polymer Mixtures. Part II. Comparison with Polystyrene/Nanosilica Mixtures”, Rheol. Acta, 42, 47–55 (2003), DOI:10.1007/s00397-002-0253-z10.1007/s00397-002-0253-zSearch in Google Scholar

Hobbie, E. K., Fry, D. J., “Rheology of Concentrated Carbon Nanotube Suspensions”, J. Chem. Phys., 126, 124907–124904 (2007), DOI:10.1063/1.271117610.1063/1.2711176Search in Google Scholar

Isaki, T., Takahashi, M., Takigawa, T. and Masuda, T., “Comparison between Uniaxial and Biaxial Elongational Flow Behavior of Viscoelastic Fluids as Predicted by Differential Constitutive Equations”, Rheol. Acta, 30, 530–539 (1991), DOI:10.1007/BF0044437110.1007/BF00444371Search in Google Scholar

Isayev, A. I., Fan, X., “Viscoelastic Plastic Constitutive Equation for Flow of Particle Filled Polymers”, J. Rheol., 34, 35–54 (1990), DOI:10.1122/1.55011310.1122/1.550113Search in Google Scholar

Isayev, A. I., Hieber, C. A., “Toward a Viscoelastic Modelling of Injection Molding of Polymers”, Rheol. Acta, 19, 168–182 (1980), DOI:10.1007/BF0152192810.1007/BF01521928Search in Google Scholar

Isayev, A. I., Hieber, C. A., “Oscillatory Shear Flow of Polymeric Systems”, J. Polym. Sci., Part B: Polym. Phys., 20, 423–440 (1982), DOI:10.1002/pol.1982.18020030610.1002/pol.1982.180200306Search in Google Scholar

Isayev, A. I., Hieber, C. A., Upadhyay, R. K. and Shen, S. F., “Chapter 15 Time-Dependent Rheological Behavior of Polymeric Systems”, in Rheology, Vol. 3: Applications, Astarita, G., Marrucci, G. and Nicolais, L. (Eds.), Springer Publishing, Boston, p. 91–98 (1980), DOI:10.1007/978-1-4684-3746-1_1510.1007/978-1-4684-3746-1_15Search in Google Scholar

Isayev, A. I., Upadhyay, R. K., “Two-dimensional Viscoelastic Flows: Experimentation and Modeling”, J. Non-Newtonian Fluid Mech., 19, 135–160 (1985), DOI:10.1016/0377-0257(85)85002-310.1016/0377-0257(85)85002-3Search in Google Scholar

Isayev, A. I., Kumar, R. and Lewis, T. D., “Ultrasound Assisted Twin Screw Extrusion of Polymer Nanocomposites Containing Carbon Nanotubes”, Polymer, 50, 250–260 (2009), DOI:10.1016/j.polymer.2008.10.05210.1016/j.polymer.2008.10.052Search in Google Scholar

Isayev, A. I., Wong, C. M., “Parallel Superposition of Small- and Large-Amplitude Oscillations upon Steady Shear Flow of Polymer Fluids”, J. Polym. Sci., Part B: Polym. Phys., 26, 2303–2327 (1988), DOI:10.1002/polb.1988.09026111010.1002/polb.1988.090261110Search in Google Scholar

Isayev, A. I., Yanovskii, Yu. G., Vinogradov, G. V. and Gordievskii, L. A., “Mechanical Parameters of Dispersed Systems Under Cyclic Deformations with Various Amplitudes”, J. Eng. Phys., 18, 675 – 678 (1970), DOI:10.1007/BF0082783810.1007/BF00827838Search in Google Scholar

Ivanov, E., Krusteva, E. and Djoumalijsky, S., “Effect of Processing on Rheology and Structure of Polypropylene/Carbon Nanotube Composites”, J. Nanosci. Nanotech., 8, 89–92 (2008)Search in Google Scholar

Jia, Y., Peng, K., Gong, X.-L. and Zhang Z., “Creep and Recovery of Polypropylene/Carbon Nanotube Composites”, Int. J. Plast., 27, 1239–1251 (2011), DOI:10.1016/j.ijplas.2011.02.00410.1016/j.ijplas.2011.02.004Search in Google Scholar

Joseph, D. D., Renardy, M. and Saut, J. C., “Hyperbolicity and Change of Type in the Flow of Viscoelastic Fluids”, Arch. Rational. Mech. Anal., 87, 213–251 (1985), DOI:10.1007/BF0025072510.1007/BF00250725Search in Google Scholar

Joseph, D. D.: Fluid Mechanics of Viscoelastic Liquids, Springer Publishing, New York (1990), DOI:10.1007/978-1-4612-4462-210.1007/978-1-4612-4462-2Search in Google Scholar

Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de la Chapelle, M. L., Lefrant, S., Deniard, P., Lee, R. and Fischer, J. E., “Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique”, Nature, 388, 756–758 (1997), DOI:10.1038/4197210.1038/41972Search in Google Scholar

Joshi, P. G., Leonov, A. I., “Modeling of Steady and Time-Dependent Responses in Filled, Uncured, and Crosslinked Rubbers”, Rheol. Acta, 40, 350–365 (2001), DOI:10.1007/s00397000015710.1007/s003970000157Search in Google Scholar

Kim, P., Shi, L., Majumdar, A. and McEuen, P. L., “Thermal Transport Measurements of Individual Multiwalled Nanotubes”, Phys. Rev. Lett., 87, 215502–1–4 (2001), PMid:11736348; DOI:10.1103/PhysRevLett.87.21550210.1103/PhysRevLett.87.215502Search in Google Scholar

Kissel, W. J., Han, J. H., and Meyer J. A., “Chapter 2 Polypropylene: Structure, Properties, Manufacturing Processes, and Applications”, in Handbook of Polypropylene and Polypropylene Composites, Karian, H. G. (Ed.), CRC Press, New York (2003)Search in Google Scholar

Kitano, T., Nishimura, T., Kataoka, T. and Sakai T., “Correlation of Dynamic and Steady Flow Viscosities of Filled Polymer Systems”, Rheol. Acta, 19, 671–673 (1980), DOI:10.1007/BF0151752110.1007/BF01517521Search in Google Scholar

Kwon, Y., Leonov, A. I., “On 1D Instabilities in Simple Shear and Extensional Flows as Predicted by Some Maxwell-Like Constitutive Equations”, J. Rheol., 36, 1515–1528 (1992), DOI:10.1122/1.55027110.1122/1.550271Search in Google Scholar

Kwon, Y., Leonov, A. I., “On Hadamard-Type Stability of Single-Integral Constitutive Equations for Viscoelastic Liquids”, J. Non-Newtonian Fluid Mech., 47, 77–91 (1993), DOI:10.1016/0377-0257(93)80045-D10.1016/0377-0257(93)80045-DSearch in Google Scholar

Kwon, Y., Leonov, A. I., “On Instabilities of Single Integral Constitutive Equations for Viscoelastic Liquids”, Rheol. Acta, 33, 398– 404 (1994a), DOI:10.1007/BF0036658210.1007/BF00366582Search in Google Scholar

Kwon, Y., Leonov, A. I., “On the Stability Constraints for the Formulation of Viscoelastic Constitutive Equations”, J. Non-Newtownian Fluid Mech., 58, 25–46 (1994b), DOI:10.1016/0377-0257(94)01341-E10.1016/0377-0257(94)01341-ESearch in Google Scholar

Larson, R. G., “Elongational-Flow Predictions of the Leonov Constitutive Equation”, Rheol. Acta, 22, 435–448 (1983), DOI:10.1007/BF0146293010.1007/BF01462930Search in Google Scholar

Larson, R. G.: Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston (1988), DOI:10.1016/B978-0-409-90119-1.50014-210.1016/B978-0-409-90119-1.50014-2Search in Google Scholar

Lau, K-T., Hui, D., “The Revolutionary Creation of New Advanced Materials – Carbon Nanotube Composites”, Composites, Part B, 33, 263–277 (2002), DOI:10.1016/S1359-8368(02)00012-410.1016/S1359-8368(02)00012-4Search in Google Scholar

Lee, S. H., Cho, E., Jeon, S. H. and Youn, J. R., “Rheological and Electrical Properties of Polypropylene Composites Containing Functionalized Multi-Walled Carbon Nanotubes and Compatibilizers”, Carbon, 45, 2810–2822 (2007), DOI:10.1016/j.carbon.2007.08.04210.1016/j.carbon.2007.08.042Search in Google Scholar

Lee, S. H., Kim, M. W., Kim, S. H. and Youn, J. R., “Rheological and Electrical Properties of Polypropylene/MWCNT Composites Prepared with MWCNT Masterbatch Chips”, Euro. Polym. J., 44, 1620–1630 (2008), DOI:10.1016/j.eurpolymj.2008.03.01710.1016/j.eurpolymj.2008.03.017Search in Google Scholar

Leonov, A. I., “Nonequilibrium Thermodynamics and Rheology of Viscoelastic Polymer Media”, Rheol. Acta, 15, 85–98 (1976), DOI:10.1007/BF0151749910.1007/BF01517499Search in Google Scholar

Leonov, A. I., “On the Rheology of Filled Polymers”, J. Rheol., 34, 1039–1068 (1990), DOI:10.1122/1.55010910.1122/1.550109Search in Google Scholar

Leonov, A. I., “Analysis of simple Constitutive Equations for Viscoelastic liquids”, J. Non-Newtownian Fluid Mech., 42, 323–349 (1992), DOI:10.1016/0377-0257(92)87017-610.1016/0377-0257(92)87017-6Search in Google Scholar

Leonov, A. I., “On a Self-Consistent Molecular Modeling of Linear Relaxation Phenomena in Polymer Melts and Concentrated Solutions”, J. Rheol., 38, 1–11 (1994), DOI:10.1122/1.55051110.1122/1.550511Search in Google Scholar

Leonov, A. I., “Chapter 15 Constitutive Equations for Viscoelastic Liquids: Formulation, Analysis and Comparison with Data,” in Rheology Series, Vol. 8: Advances in the Flow and Rheology of Non-Newtonian Fluids, Siginer, D. A., DeKee, D. and Chhabra, R. P. (Eds.), Elsevier, New York, p. 519–575 (1999), DOI:10.1016/S0169-3107(99)80040-910.1016/S0169-3107(99)80040-9Search in Google Scholar

Leonov, A. I., Lipkina, E. H., Paskhin, E. D. and Prokunin, A. N., “Theoretical and Experimental Investigation of Shearing in Elastic Polymer Liquids”, Rheol. Acta, 15, 411–426 (1976), DOI:10.1007/BF0157449610.1007/BF01574496Search in Google Scholar

Leonov, A. I., Prokunin, A. N., “An Improved Simple Version of a Nonlinear theory of Elasto-Viscous Polymer Media”, Rheol. Acta, 19, 393–403 (1980), DOI:10.1007/BF0152401210.1007/BF01524012Search in Google Scholar

Leonov, A. I., Prokunin, A. N., “On Nonlinear Effects in the Extensional Flow of Polymeric Liquids”, Rheol. Acta, 22, 137–150 (1983), DOI:10.1007/BF0133236810.1007/BF01332368Search in Google Scholar

Leonov, A. I., Prokunin, A. N.: Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman & Hall, New York (1994), DOI:10.1007/978-94-011-1258-110.1007/978-94-011-1258-1Search in Google Scholar

Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A. and Wang, G., “Large-Scale Synthesis of Aligned Carbon Nanotubes”, Science, 274, 1701–1703 (1996), DOI:10.1126/science.274.5293.170110.1126/science.274.5293.1701Search in Google Scholar

Lim, H. T., Ahn, K. H., Hong, J. S. and Hyun, K., “Nonlinear Viscoelasticity of Polymer Nanocomposites under Large Amplitude Oscillatory Shear Flow”, J. Rheol., 57, 767–789 (2013), DOI:10.1122/1.479574810.1122/1.4795748Search in Google Scholar

Lu, J. P., “Elastic Properties of Carbon Nanotubes and Nanoropes”, Phys. Rev. Lett., 79, 1297–1300 (1997), DOI:10.1103/PhysRevLett.79.129710.1103/PhysRevLett.79.1297Search in Google Scholar

McNally, T., Potschke, P.: Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications, 1st Edition, Woodhead Publishing Ltd., Oxford (2011), DOI:10.1016/B978-1-84569-761-7.50029-010.1016/B978-1-84569-761-7.50029-0Search in Google Scholar

Moniruzzaman, M., Winey, K., “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromol., 39, 5194–5205 (2006), DOI:10.1021/ma060733p10.1021/ma060733pSearch in Google Scholar

Montes, S., White, J. L., “Rheological Models of Rubber-Carbon Black Compounds: Low Interaction Viscoelastic Models and High Interaction Thixotropic-Plastic-Viscoelastic Models”, J. Non-New-townian Fluid Mech., 49, 277–298 (1993), DOI:10.1016/0377-0257(93)85005-U10.1016/0377-0257(93)85005-USearch in Google Scholar

Narimani, A., Hemmati, M., “Electrical and Steady Shear Rheological Behaviour of Polypropylene Composites Reinforced with Single-Walled Carbon Nanotubes”, Polym. Compos. 22, 533–540 (2014), DOI:10.1177/09673911140220060510.1177/096739111402200605Search in Google Scholar

Norton, E., “Steady State and Dynamic Oscillatory Shear Properties of Carbon Black Filled Elastomers”, Master’s Thesis, University of Akron (2019)Search in Google Scholar

Pan, Y., Chan, X. S. and Li, L., “Rheological Study on the Gel-Like Behaviour of Carbon Nanotube/Polypropylene Composites: Effect of Interfacial Adhesion”, Nihon Reoroji Gakkaishi, 41, 121–128 (2013), DOI:10.1678/rheology.41.12110.1678/rheology.41.121Search in Google Scholar

Papanastasiou, T. C., “Flow of Materials with Yield”, J. Rheol., 31, 385–404 (1987), DOI:10.1122/1.54992610.1122/1.549926Search in Google Scholar

Park, J. M., Kwon, T. H., “Irreversible Thermodynamics Based Constitutive Theory for Fiber Suspended Polymeric Liquids”, J. Rheol., 55, 517–543 (2011), DOI:10.1122/1.356881410.1122/1.3568814Search in Google Scholar

Petchwattana, N., Covavisaruch, S. and Phetsang, K., “Multi-walled Carbon Nanotube Filled Polypropylene Nanocomposites: Electrical, Mechanical, Rheological, Thermal and Morphological Investigations”, ICIAE Tech. Papers, 358–365 (2015), DOI:10.12792/iciae2015.06310.12792/iciae2015.063Search in Google Scholar

Phan-Thien, N., Tanner, R. I., “A New Constitutive Equation Derived from Network Theory”, J. Non-Newtownian Fluid Mech., 2, 353– 365 (1997), DOI:10.1016/0377-0257(77)80021-910.1016/0377-0257(77)80021-9Search in Google Scholar

Philippoff, W., “Vibrational Measurements with Large Amplitudes”, Trans. Soc. Rheol., 10, 317–334 (1966), DOI:10.1122/1.54904910.1122/1.549049Search in Google Scholar

Pole, S. S., “Constitutive Modeling of the Rheological Behavior of Rubber Compounds and Plastic Composites”, PhD Dissertation, University of Akron (2019)Search in Google Scholar

Pole, S. S., Isayev, A. I., “Simulation of the Linear Rheological Behavior of Silica-Filled, Star-Shaped SBR Compounds”, Rheol. Acta, 56, 983–993 (2017), DOI:10.1007/s00397-017-1049-510.1007/s00397-017-1049-5Search in Google Scholar

Pole, S. S., Isayev, A. I., “The Nonlinear Stress Relaxation Behavior After a Step Shear of Star-Shaped SBR Filled with Precipitated Silica: Experiment and Simulation”, J. Appl. Polym. Sci., 138, 50080 (2021), DOI:10.1002/app.5008010.1002/app.50080Search in Google Scholar

Prashantha, K., Soulestin, J. and Lacrampe, M. F., “Multi-Walled Carbon Nanotube Filled Polypropylene Nanocomposites Based on Masterbatch Route: Improvement of Dispersion and Mechanical Properties through PP-g-MA Addition”, Express Polym. Lett., 2, 735–745 (2008), DOI:10.3144/expresspolymlett.2008.8710.3144/expresspolymlett.2008.87Search in Google Scholar

Prokunin, A. N., Isayev, A. I. and Lipkina, E. H., “Parallel Superposition of Oscillatory Motion of the Steady Shear Flow of Polymeric Liquids”, Polym. Mech., 13, 589–594 (1977), DOI:10.1007/BF0085934210.1007/BF00859342Search in Google Scholar

Prokunin, A. N., “On the Description of Viscoelastic Flows of Polymer Fluids”, Rheol. Acta, 28, 38– 47 (1989), DOI:10.1007/BF0135476710.1007/BF01354767Search in Google Scholar

Rahman, A., Ali, I., Al-Zahrani, S. M. and Eleithy, R. H., “A Review of the Applications of Nanocarbon Polymer Composites”, Nano., 6, 185–203 (2011), DOI:10.1142/S179329201100255X10.1142/S179329201100255XSearch in Google Scholar

Rueckes, T., Kim, K., Jiselevich, E., Tseng, G. Y., Cheung, C. L. and Lieber, C. M., “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing”, Science, 289, 94–97 (2000), DOI:10.1126/science.289.5476.9410.1126/science.289.5476.94Search in Google Scholar

Simhambhatla, M., “The Rheological Modeling of Simple Flows of Unfilled and Filled Polymers”, PhD Dissertation, University of Akron (1994)Search in Google Scholar

Simhambhatla, M., Leonov, A. I., “On the Rheological Modeling of Filled Polymers with Particle-Matrix Interactions”, Rheol. Acta, 34, 329–338 (1995a), DOI:10.1007/BF0036715010.1007/BF00367150Search in Google Scholar

Simhambhatla, M., Leonov, A. I., “On the Rheological Modeling of Viscoelastic Polymer Liquids with Stable Constitutive Equations”, Rheol. Acta, 34, 259–273 (1995b), DOI:10.1007/BF0039601610.1007/BF00396016Search in Google Scholar

Sobhanie, M., Isayev, A. I. and Fan, Y., “Viscoelastic Plastic Rheological Model for Particle Filled Polymer Melts”, Rheol. Acta, 36, 66–81 (1997), DOI:10.1007/BF0036672510.1007/BF00366725Search in Google Scholar

Sobhanie, M., Isayev, A. I., “Modeling and Experimental Investigation of Shear Flow of a Filled Polymer”, J. Non-Newtonian Fluid Mech., 85, 189–212 (1999), DOI:10.1016/S0377-0257(99)00002-610.1016/S0377-0257(99)00002-6Search in Google Scholar

Suetsugu, Y., White, J. L., “A Theory of Thixotropic Plastic Viscoelastic Fluids with a Time-Dependent Yield Surface and its Comparison to Transient and Steady State Experiments on Small Particle Filled Polymer Melts”, J. Non-Newtownian Fluid Mech., 14, 121–140 (1984), DOI:10.1016/0377-0257(84)80040-310.1016/0377-0257(84)80040-3Search in Google Scholar

Tang-Qing, K., He-Sheng, L., “Numerical Simulation of Mold Filling in Injection Molding with Incompressible Leonov Fluid Model”, ICECE Tech. Papers, 2864–2867 (2010), DOI:10.1109/iCECE.2010.70010.1109/iCECE.2010.700Search in Google Scholar

Teng, C.-C., Ma, C.-C. M., Huang, Y.-W., Yuen, S.-M., Weng, C.-C., Chen, C.-H. and Su, S.-F., “Effect of MWCNT Content on Rheological and Dynamic Mechanical Properties of Multiwalled Carbon Nanotube/Polypropylene Composites”, Composites, Part A, 39, 1869–1875 (2008), DOI:10.1016/j.compositesa.2008.09.00410.1016/j.compositesa.2008.09.004Search in Google Scholar

Thess, A., Lee, R., Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., “Crystalline Ropes of Metallic Carbon Nanotubes”, Science, 273, 483–487 (1996), DOI:10.1126/science.273.5274.48310.1126/science.273.5274.483Search in Google Scholar PubMed

Thiébaud, F., Gelin, J. C., “Characterization of Rheological Behaviors of Polypropylene/Carbon Nanotubes Composites and Modeling their Flow in a Twin-Screw Mixer”, Compos. Sci. Technol., 70, 647–656 (2010), DOI:10.1016/j.compscitech.2009.12.02010.1016/j.compscitech.2009.12.020Search in Google Scholar

Thomas, S. P., Girei, S. A., Atieh, M. A., De, S. K. and Al-Juhani, A., “Rheological Behavior of Polypropylene Nanocomposites at Low Concentration of Surface Modified Carbon Nanotubes”, Polym. Eng. Sci., 52, 1868–1873 (2012), DOI:10.1002/pen.2314310.1002/pen.23143Search in Google Scholar

Upadhyay, R. K., Isayev, A. I., “Elongational Flow Behavior of Polymeric Fluids According to the Leonov Model”, Rheol. Acta, 22, 557–568 (1983), DOI:10.1007/BF0135140210.1007/BF01351402Search in Google Scholar

Upadhyay, R. K., Isayev, A. I., “Nonisothermal Elongational Flow of Polymeric Fluids According to the Leonov Model”, J. Rheol., 28, 581–599 (1984), DOI:10.1122/1.54976310.1122/1.549763Search in Google Scholar

Upadhyay, R. K., Isayev, A. I., “Simulation of Two-Dimensional Planar Flow of Viscoelastic Fluid”, Rheol. Acta, 25, 80–94 (1986), DOI:10.1007/BF0133212710.1007/BF01332127Search in Google Scholar

Upadhyay, R. K., Isayev, A. I. and Shen S. F., “Transient Shear Flow Behavior of Polymeric Fluids According to the Leonov Model”, Rheol. Acta, 20, 44345 (1981), DOI:10.1007/BF0150326510.1007/BF01503265Search in Google Scholar

Upadhyay, R. K., Isayev, A. I. and Shen S. F., “Modeling of Stresses in Multistep-Shear Deformation of Polymeric Fluids”, J. Rheol., 27, 155–169 (1983), DOI:10.1122/1.54970210.1122/1.549702Search in Google Scholar

Yu, M. F., Files, B. S., Arepalli, S. and Ruoff, R. S., “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties”, Phys. Rev. Lett., 84, 5552–5555 (2000), DOI:10.1103/PhysRevLett.84.555210.1103/PhysRevLett.84.5552Search in Google Scholar

White, J. L., “A Plastic-Viscoelastic Constitutive Equation to Represent the Rheological Behavior of Small Particles and Polymer Melts”, J. Non-Newtownian Fluid Mech., 5, 177–190 (1979), DOI:10.1016/0377-0257(79)85011-910.1016/0377-0257(79)85011-9Search in Google Scholar

White, J. L., “Approximate Constitutive Equations for Slow Flow of Rigid Plastic Viscoelastic Fluids”, J. Non-Newtownian Fluid Mech., 8, 195–202 (1981), DOI:10.1016/0377-0257(81)80019-510.1016/0377-0257(81)80019-5Search in Google Scholar

White, J. L., Huang, D. C., “Dimensional Analysis and a Theory of Elastic Recovery Following Flow of Elastic Plastic Viscoelastic Fluids with Application to Filled Polymer Melts”, J. Non-Newtownian Fluid Mech., 9, 223–233 (1981), DOI:10.1016/0377-0257(81)85002-110.1016/0377-0257(81)85002-1Search in Google Scholar

White, J. L., Lobe, V. M., “Comparison of the Predictions of Viscoelastic and Plastic-Viscoelastic Fluid Model to the Rheological Behavior of Polystyrene and Polystyrene-Carbon black Compounds”, Rheol. Acta, 21, 167–175 (1982), DOI:10.1007/BF0173641510.1007/BF01736415Search in Google Scholar

Wong, C. M., Isayev, A. I., “Orthogonal Superposition of Small and Large Amplitude Oscillations upon Steady Shear Flow of Polymer Fluids”, Rheol. Acta, 28, 176–189 (1989), DOI:10.1007/BF0135697810.1007/BF01356978Search in Google Scholar

Wong, E. W., Sheehan, P. E. and Lieber, C. M., Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes", Science, 277, 1971–1975 (1997), DOI:10.1126/science.277.5334.197110.1126/science.277.5334.1971Search in Google Scholar

Wong, S. S., Joselevich, E., Wooley, A. T., Cheung, C. L. and Lieber, C. M., “Covalently Functionalized Nanotubes as Nanometer-Sized Probes in Chemistry and Biology”, Nature, 394, 52–55 (1998), DOI:10.1038/2787310.1038/27873Search in Google Scholar

Yang, J., Fan, L. and Dai, Y., “Modified Single-Mode Leonov Rheological Equations for Polymer Melts and Solutions”, J. Macromol. Sci., Part B: Phys., 54, 424–432 (2015), DOI:10.1080/00222348.2015.101068210.1080/00222348.2015.1010682Search in Google Scholar

Yao, Z., Postma, H., Balents, W. L. and Dekker, C., “Carbon Nanotube Intramolecular Junctions”, Nature, 402, 273–276 (1999), DOI:10.1038/4624110.1038/46241Search in Google Scholar

Yetgin, S. H., “Effect of Multi Walled Carbon Nanotube on Mechanical, Thermal, and Rheological Properties of Polypropylene”, J. Mater. Res. Technol., 8, 4725–4735 (2019), DOI:10.1016/j.jmrt.2019.08.01810.1016/j.jmrt.2019.08.018Search in Google Scholar

Yziquel, F., Carreau, P., Moan, M. and Tanguy, P. A., “Rheological Modeling of Concentrate Colloidal Suspensions”, J. Non-Newtownian Fluid Mech., 86, 133–155 (1999), DOI:10.1016/S0377-0257(98)00206-710.1016/S0377-0257(98)00206-7Search in Google Scholar

Zatloukal, M., “Differential Viscoelastic Constitutive Equations for Polymer Melts in Steady Shear and Elongational Flows”, J. Non-Newtonian Fluid Mech., 113, 209–227 (2003), DOI:10.1016/S0377-0257(03)00112-510.1016/S0377-0257(03)00112-5Search in Google Scholar

Zelenkova, J., Pivokonsky, E. and Filip, P., “Two Ways to Examine Differential Constitutive Equations: Initiated on Steady or Initiated on Unsteady (LAOS) Shear Characteristics”, Polymer, 9, 205– 216 (2017), DOI:10.3390/polym906020510.3390/polym9060205Search in Google Scholar PubMed PubMed Central

Zhong, J., “Ultrasonically Aided Extrusion in Preparation of Polymer Composites with Carbon Fillers”, PhD Dissertation, University of Akron (2016)Search in Google Scholar

Zhong, J., Isayev, A. I. and Huang, K., “Influence of Ultrasonic Treatment in PP/CNT Composites Using Masterbatch Dilution Method”, Polymer, 55, 1745–1755 (2014), DOI:10.1016/j.polymer.2014.02.01410.1016/j.polymer.2014.02.014Search in Google Scholar

Zhong, J., Isayev, A. I., “Ultrasonically Assisted Compounding of CNT with Polypropylenes of Different Molecular Weights”, Polymer, 107, 130–146 (2016), DOI:10.1016/j.polymer.2016.11.00610.1016/j.polymer.2016.11.006Search in Google Scholar

Zhong, J., Isayev, A. I., “Ultrasonic Treatment of PP/CNT Composites during Twin-Screw Extrusion: Effect of Screw Configuration”, Polym. Compos., 38, 2695–2706 (2017), DOI:10.1002/pc.2386710.1002/pc.23867Search in Google Scholar

Zhong, J., Liang, T. and Isayev, A. I., “Linear and Nonlinear Behavior on PP/CNT Composites Prepared by Continuous Ultrasonic Twin-Screw Extrusion”, SPE ANTEC Tech. Papers, 225–232 (2017)Search in Google Scholar

Zhou, K., Gu, S.-Y., Zhang, Y.-H. and Ren, J., “Effect of Dispersion on Rheological and Mechanical Properties of Polypropylene/Carbon Nanotubes Nanocomposites”, Polym. Eng. Sci., 52, 1485 – 1494 (2012), DOI:10.1002/pen.2309810.1002/pen.23098Search in Google Scholar

Received: 2020-10-28
Accepted: 2020-11-21
Published Online: 2021-07-07
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-4055/html
Scroll to top button