Home A Composite Model for Melting, Pressure and Fill Factor Profiles in a Metered Fed Closely Intermeshing Counter-rotating Twin Screw Extruder
Article
Licensed
Unlicensed Requires Authentication

A Composite Model for Melting, Pressure and Fill Factor Profiles in a Metered Fed Closely Intermeshing Counter-rotating Twin Screw Extruder

  • K. Wilczynski , Q. Jiang and J. L. White
Published/Copyright: February 28, 2022
Become an author with De Gruyter Brill

Abstract

A composite model of solids conveying, melting and melt flow in a closely intermeshing counter-rotating twin-screw extruder of modular design has been developed. This is based on combining melt conveying models with new melting and solids conveying models. Computations are made for axial fill factor, pressure, temperature and melting profiles. The results are compared with experiment.


* Mail address: J. L. White, Institute of Polymer Engineering, The University of Akron, Ohio 44325-0301, USA

You will find the article and additional material by entering the document number IPP2001 on our website at www.polymer-process.com


Nomenclature

ρ

material density

ρm

densities of melt

ρs

densities of solids

σ12

shear stresses on the barrel associated with theflow

σ32

shear stresses on the barrel associated with theflow

σzx

shear stress resulting from frictional forces in the gap, defined as σzx = fsp

φ

helix angle

λ

heat of fusion

φ(x)

fill factor

η

viscosity

calender gap

A

screw channel cross-sectional areas

b

viscosity temperature sensitivity

cs

specific heats of the solid and melt

cm

specific heats of the solid and melt

D

diameter of screw

f

leakage effect factor

fs

coefficient of friction

G

mass flow rate, defined as G = ρQ

H

screw channel depth

hb

heat transfer coefficients on the barrel

hS

heat transfer coefficients on the screw

  Δ  H ¯

specific enthalpy increase, defined as ΔH¯=cs(TmTs)+λ+cm(TfTm)

K0

viscosity constant

Lc

crew channel length in channel direction

L

screw pitch

m(x)

melt fraction

N

screw speed (min –1)

n

Power law index

p

pressure

p(die)

pressure at the end of the screw

Pn

pressure at the end of element n

qs

heat flow into the screw

Q

volumetric flow rate, defined as Q=0Acsv1dA=0Wq1 dx3

q1

flow rate in depth, defined as q1=0Hv1dx2

Qleak

backward leakage

Qp

flow rate into calender gap from channel, defined as Qp=f[ π(R1+R2)NWΔ ]

S⊝

perimeter of contact on the screw surface

Tf

temperatures of the solid and melt

Tm

melting point

To

reference temperature

Ts

temperatures of the solid and melt

T¯¯ (z)

cup-mixing mean channel temperature, defined as

T ¯ ¯ z = 0 W q 1 T ¯ x 1 , x 3 d x 3 Q
T ¯ (X1, X3)

mean channel temperature, defined as T ¯ x 1 , x 3 = 0 H v 1 T d x 2 0 H v 1 d x 2

W

screw channel width

Wb

inter-flight distance of the barrel

Ws

inter-flight distance of the screw

vi

flow velocities in screw channel, i = 1, 2, 3, where 1 is the flow direction, 2 is the direction perpendicular to the screw and 3 is the transverse direction perpendicular to the screw fligh

Vc

volume of the screw C-chamber

vθ

θ velocity component

vz

z velocity component

xi

screw coordinate, i = 1, 2, 3

z, Z

axial distance along screw, same as 1

References

1 German Patent 45 37 27 (1927) Burghauser, F.10.2307/2787404Search in Google Scholar

2 U.S. Patent 1 69 88 02 (1929) Montelius, C. O. J.Search in Google Scholar

3 Montelius, C. O. J.: Teknist Tidskaift 6, p. 61 (1933)Search in Google Scholar

4 U.S. Patent 196537(1934) Montelius, C. O. J.Search in Google Scholar

5 White, J. L.: Twin Screw Extrusion, Technology and Principles. Hanser, Munich (1990)Search in Google Scholar

6 Kiesskalt, S.: VDI Zeitschr. 71, p. 453 (1927)Search in Google Scholar

7 Schenkel, G.: Kunststoffe Extrudertechnik. Hanser, Munich (1963)Search in Google Scholar

8 Doboczky, Z.: Plastverarbeiter 16, p. 58 (1965)10.2307/355816Search in Google Scholar

9 Doboczky, Z.: Plastverarbeiter 16, p. 395 (1965)10.2307/3006961Search in Google Scholar

10 Janssen, L. B. M., Mulders, L. H. R. M., Smith, J. M.: Plastics and Polym. 43, p. 93 (1974)Search in Google Scholar

11 Janssen, L. B. M., Smith, J. M.: Plastics Rubber Proc. 44, p. 90 (1976)Search in Google Scholar

12 Janssen, L. B. M.: Twin Screw Extrusion. Elsevier, Amsterdam (1978)Search in Google Scholar

13 White, J. L., Adewale, A.: Int. Polym. Process. 8, p. 210 (1993)10.3139/217.930210Search in Google Scholar

14 Li, T., Manas Zloczower, I.: Polym. Eng. Sci. 34, p. 551 (1994)10.1002/pen.760340703Search in Google Scholar

15 Hong, M. H., White, J. L.: Int. Polym. Process. 13, p. 342 (1998)10.3139/217.980342Search in Google Scholar

16 Hong, M. H., White, J. L.: Int. Polym. Process. 14, p. 136 (1999)10.3139/217.1538Search in Google Scholar

17 Wilczynski, K., White, J. L.: Int. Polym. Process. 16, p. 257 (2001)10.3139/217.1645Search in Google Scholar

18 Wilczynski, K., White, J. L.: Polym. Eng. Sci. 43, p. 1715 (2003)10.1002/pen.10145Search in Google Scholar

19 Wang, D., Min, K.: Int. Polym. Process. 21, p. 17 (2006)10.3139/217.0080Search in Google Scholar

20 Wang, Y., White, J. L., Szydlowski, W.: Int. Polym. Process. 4, p. 263 (1989)10.3139/217.890262Search in Google Scholar

21 Bawiskar, S., White, J. L.: Int. Polym. Process. 12, p. 331 (1997)10.3139/217.970331Search in Google Scholar

22 White, J. L., Keum, J. M., Jung, H., Ban, K., Bumm, S.: Polym. Plast. Tech. Eng. 45, p. 539 (2006)10.1080/03602550600554091Search in Google Scholar

23 Potente, H., Melisch, U., Flecke, J.: SPE ANTEC Tech Papers 42, p. 334 (1996)Search in Google Scholar

24 Potente, H., Bastian, M., Flecke, J.: Advances in Polym. Tech. 18, p. 147 (1999)10.1002/(SICI)1098-2329(199922)18:2<147::AID-ADV5>3.0.CO;2-XSearch in Google Scholar

25 Vergnes, B., Della Valle, G., Delamare, L.: Polym. Eng. Sci. 38, p. 1781 (1998)10.1002/pen.10348Search in Google Scholar

26 White, J. L., Chen, Z.: Polym. Eng. Sci. 34, p. 229 (1984)10.1002/pen.760340309Search in Google Scholar

27 White, J. L., Szydlowski, W.: Adv. Polym. Technol. 7, p. 419 (1987)10.1002/adv.1987.060070407Search in Google Scholar

28 White, J. L., Montes, S., Kim, J. K.: Kautsch. Gummi Kunstst. 43, p. 20 (1990)10.2307/3563430Search in Google Scholar

29 White, J. L., Potente, H., (Eds.): Screw Extrusion. Polym. Process. Society and Hanser, Munich (2003)10.3139/9783446434189.fmSearch in Google Scholar

30 Lim, S., White, J. L.: Int. Polym. Process. 9, p. 33 (1994)10.3139/217.940033Search in Google Scholar

31 Cho, J. W., White, J. L.: Int. Polym. Process. 11, p. 21 (1996)10.3139/217.960021Search in Google Scholar

32 Maddock, B. H.: SPE Journal May, p. 383 (1959)Search in Google Scholar

33 Bawiskar, S., White, J. L.: Polym. Eng. Sci. 38, p. 727 (1998)10.1002/pen.10238Search in Google Scholar

34 Jung, H., White, J. L.: Int. Polym. Process. 18, p. 127 (2003)10.3139/217.1741Search in Google Scholar

35 Todd, D. B.: SPE ANTEC Tech Papers 34, p. 54 (1988)10.1007/BF01403887Search in Google Scholar

36 White, J. L., Kim, E. K., Keum, J. M., Jong, H. C., Bang, D. S.: Polym. Eng. Sci. 41, p. 1448 (2001)10.1002/pen.10844Search in Google Scholar

Received: 2006-11-02
Accepted: 2007-01-22
Published Online: 2022-02-28
Published in Print: 2022-02-28

© 2007 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2007-0011/html
Scroll to top button