Home Modelling of Phase Transitions and Residual Thermal Stress of CTBN Rubber Modified Epoxy Resins during a Pultrusion Process
Article
Licensed
Unlicensed Requires Authentication

Modelling of Phase Transitions and Residual Thermal Stress of CTBN Rubber Modified Epoxy Resins during a Pultrusion Process

  • L. Calabrese and A. Valenza
Published/Copyright: February 28, 2022
Become an author with De Gruyter Brill

Abstract

The implicit finite difference and fourth order Runge-Kutta method are used both to solve the heat transfer problem in the pultrusion reaction and to calculate the temperature and conversion distributions within a thermoset composite profile. The aim of our work is to study the influence of a rubbery phase added to the epoxy matrix in production conditions. The results have shown that the rubber modified systems have a low exothermic temperature peak value, so that neither the amount of cured resin nor the final product properties are limited.

First of all we will show that the phase transition (gelation and vitrification) zones within the die change as the amount of rubber varies in the resin. The relationship between the position and of these zones and the resin systems will be discussed. We calculate the residual thermal stresses for all the investigated fibre/resin systems, showing a reduction when the rubber amount increases in the epoxy blend.


* Mail address: A. Valenza, Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy


References

1 Sala, G., Tutolo, D.: Composites A 28, p. 637 (1997)10.1016/S1359-835X(97)00002-XSearch in Google Scholar

2 Raper, K. S., Roux, J. A., McCarty, T. A., Vaughan, J. G.: Composites A 30, p. 1123 (1999)10.1016/S1359-835X(98)00196-1Search in Google Scholar

3 Moschiar, S. M., Reboredo, M. M., Larrondo, H., Vazquez, A.: Polymer Composites 17, p. 850 (1996)10.1002/pc.10678Search in Google Scholar

4 Giordano, M., Nicolais, L.: Polymer Composites 18, p. 681 (1997)10.1002/pc.10320Search in Google Scholar

5 Valliapan, M., Roux, J. A., Vaughan, J. G.: Composites B 27, p. 1 (1996)10.1016/1359-8368(95)00001-1Search in Google Scholar

6 Joshi, S. C., Lam, Y. C.: Composites Science and Technology 61, p. 1539 (2001)10.1016/S0266-3538(01)00056-2Search in Google Scholar

7 Ding, Z., Li, S. J., Lee, J.: Polymer Composites 23, p. 957 (2002)10.1002/pc.10493Search in Google Scholar

8 Creese, R. C., Patrawala, T. B.: Cost Engineering 42, p. 38 (2002)Search in Google Scholar

9 Atarsia, A., Boukhili, R.: Journal of Reinforced Plastics and Composites 19/18, p. 1493 (2000)10.1177/073168400772678446Search in Google Scholar

10 Mallick, P. K.: Fiber-reinforced Composites: Materials, Manufacturing and Design. Marcel Dekker, New York (1993)Search in Google Scholar

11 Calabrese, L., Valenza, A.: Composites Science and Technology 63, p. 851 (2003)10.1016/S0266-3538(02)00269-5Search in Google Scholar

12 Chen, Y. T., Macosko, C. W.: Chemorheology of Polycyanate for Resin Transfer Molding. International SAMPE Technical Conference, p. T630 (1992)Search in Google Scholar

13 Scannapieco, E., Harlow, F. H.: Introduction to Finite-difference Methods for Numerical Fluid Dynamics, Los Alamos National Laboratory Report LA-12984 (1995)10.2172/212567Search in Google Scholar

14 Calabrese, L., Valenza, A.: European Polymer Journal 39, p. 1355 (2003)10.1016/S0014-3057(02)00390-7Search in Google Scholar

15 Nairn, J. A.: Polymer Composites 6, p. 123 (1985)10.1002/pc.750060211Search in Google Scholar

16 Sarrionandia, M., Mondragon, I., Moschiar, S. M., Reboredo, M. M., Vazquez, A.: Polymer Composites 23, p. 21 (2002)10.1002/pc.10408Search in Google Scholar

Received: 2005-12-16
Accepted: 2006-12-10
Published Online: 2022-02-28
Published in Print: 2022-02-28

© 2007 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2007-0002/html
Scroll to top button