Startseite Technik Existence Theory and Stability Analysis of Fractional Langevin Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence Theory and Stability Analysis of Fractional Langevin Equation

  • Rizwan Rizwan EMAIL logo
Veröffentlicht/Copyright: 20. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider a non local boundary value problem of nonlinear fractional Langevin equation with non-instantaneous impulses. Initially, we form a standard framework to originate a formula of solutions to our proposed model and then implement the concept of generalized Ulam–Hyers–Rassias using Diaz–Margolis’s fixed point theorem over a generalized complete metric space.

MSC 2010: 26A33; 34A08; 34B27
  1. Competing interests The authors declare that they have no competing interest regarding this research work.

  2. Authors contributions All the authors contributed equally and significantly in writing this paper. All the authors read and approved the final manuscript.

References

[1] S. M. Ulam, A collection of mathematical problems, Interscience Publishers, New York, 1968.Suche in Google Scholar

[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.10.1073/pnas.27.4.222Suche in Google Scholar PubMed PubMed Central

[3] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Am. Math. 72 (1978), 297–300.10.1090/S0002-9939-1978-0507327-1Suche in Google Scholar

[4] I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babes Bolyai Math. 54 (2009), 125–133.Suche in Google Scholar

[5] R. Shah and A. Zada, A fixed point approach to the stability of a nonlinear volterra integrodiferential equation with delay, Hacettepe J. Math. Stat. 47(3) (2018), 615–623.Suche in Google Scholar

[6] S. O. Shah, A. Zada and A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst. doi: 10.1007/s12346-019-00315-x.Suche in Google Scholar

[7] J. Wang, M. Feckan and Y. Zhou, Ulam’s type stability of impulsive ordinary differential equation, J. Math. Anal. Appl. 35 (2012), 258–264.10.1016/j.jmaa.2012.05.040Suche in Google Scholar

[8] A. Zada, O. Shah and R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput. 271 (2015), 512–518.10.1016/j.amc.2015.09.040Suche in Google Scholar

[9] A. Zada, S. Shaleena and T. Li, Stability analysis of higher order nonlinear differential equations in β-normed spaces, Math. Meth. Appl. Sci. 42(4) (2019), 1151–1166.10.1002/mma.5419Suche in Google Scholar

[10] A. Zada, P. Wang, D. Lassoued and T. X. Li, Connections between Hyers–Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems, Adv. Diff. Eq. 2017 (2017), 192.10.1186/s13662-017-1248-5Suche in Google Scholar

[11] A. Zada, M. Yar and T. Li, Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 103–125.10.2478/aupcsm-2018-0009Suche in Google Scholar

[12] R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), 973–1033.10.1007/s10440-008-9356-6Suche in Google Scholar

[13] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional calculus models and numerical methods, series on complexity, nonlinearity and chaos, World Scientific, 2012.10.1142/8180Suche in Google Scholar

[14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equation, Elsevier Science B.V., North Holland, 2006.Suche in Google Scholar

[15] V. Lakshmikantham, S. Leela and J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cambridge, 2009.Suche in Google Scholar

[16] I. Podlubny, Fractional differential equations, Academic Press, Sun Diego, 1999.Suche in Google Scholar

[17] S. Tang, A. Zada, S. Faisal, M. M. A. El-Sheikh and T. Li, Stability of higher-order nonlinear impulsive differential equations, J. Nonlin. Sci. Appl. 9 (2016), 4713–4721.10.22436/jnsa.009.06.110Suche in Google Scholar

[18] V. E. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Springer, HEP, Moscow, 2011.10.1007/978-3-642-14003-7_11Suche in Google Scholar

[19] B. Ahmad, J. J. Nieto, A. Alsaedi and M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. Real World Appl., RWA 13(2) (2012), 599–602.10.1016/j.nonrwa.2011.07.052Suche in Google Scholar

[20] K. S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E 73(6) (2006), 061104.10.1103/PhysRevE.73.061104Suche in Google Scholar PubMed

[21] S. C. Lim, M. Li and L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A. 372(42) (2008), 6309–6320.10.1016/j.physleta.2008.08.045Suche in Google Scholar

[22] F. Mainardi, P. Pironi, The fractional Langevin equation: Brownian motion revisited, Extracta Math. 11(1) (1996), 140–154.Suche in Google Scholar

[23] Z. Ali, A. Zada and K. Shah, Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem, Bound. Value Probl. 2018 (2018), 175.10.1186/s13661-018-1096-6Suche in Google Scholar

[24] M. Benchohra and D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Diff. Equ. 8 (2009), 1–14.10.14232/ejqtde.2009.4.8Suche in Google Scholar

[25] M. Feckan, Y. Zhou and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 3050–3060.10.1016/j.cnsns.2011.11.017Suche in Google Scholar

[26] N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results Math. 63 (2013), 1289–1310.10.1007/s00025-012-0269-3Suche in Google Scholar

[27] J. Wang, Y. Zhou and M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl. 64 (2012), 3389–3405.10.1016/j.camwa.2012.02.021Suche in Google Scholar

[28] J. Wang, A. Zada and W. Ali, Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces, Int. J. Nonlin. Sci. Numer. Simul. 19(5) (2018), 553–560.10.1515/ijnsns-2017-0245Suche in Google Scholar

[29] A. Zada and S. Ali, Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlin. Sci. Numer. Simul. 19(7) (2018), 763–77410.1515/ijnsns-2018-0040Suche in Google Scholar

[30] A. Zada, S. Ali and Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Diff. Eq. 2017 (2017), 317.10.1186/s13662-017-1376-ySuche in Google Scholar

[31] A. Zada, W. Ali and S. Farina, Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci. 40(15) (2017), 5502–5514.10.1002/mma.4405Suche in Google Scholar

[32] A. Zada and S. O. Shah, Hyers–Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacettepe J. Math. Stat. 47(5) (2018), 1196–1205.10.15672/HJMS.2017.496Suche in Google Scholar

[33] J. Wang, Y. Zhou and Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput. 242 (2014), 649–657.10.1016/j.amc.2014.06.002Suche in Google Scholar

[34] S. Peng and J. Wang, Existence and Ulam–Hyers stability of ODEs involving two Caputo fractional derivatives, Electron. J. Qual. Theory Diff. Equ. 52 (2015), 1–16.10.14232/ejqtde.2015.1.52Suche in Google Scholar

[35] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete matric space, Bull. Am. Math. Soc. 74 (1968), 305–309.10.1090/S0002-9904-1968-11933-0Suche in Google Scholar

Received: 2019-02-07
Accepted: 2019-07-22
Published Online: 2019-08-20
Published in Print: 2019-11-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2019-0053/pdf
Button zum nach oben scrollen