Startseite Technik Positive Solutions for a Semipositone Singular Riemann–Liouville Fractional Differential Problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Positive Solutions for a Semipositone Singular Riemann–Liouville Fractional Differential Problem

  • Ravi P. Agarwal und Rodica Luca EMAIL logo
Veröffentlicht/Copyright: 10. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the existence of multiple positive solutions for a nonlinear singular Riemann–Liouville fractional differential equation with sign-changing nonlinearity, subject to Riemann–Stieltjes boundary conditions which contain fractional derivatives. In the proof of our main theorem, we use various height functions of the nonlinearity of equation defined on special bounded sets, and two theorems from the fixed point index theory.

JEL Classification: 34A08; 45G15

Acknowledgements

The authors thank the referees for their valuable comments and suggestions.

References

[1] J. Henderson and R. Luca, Existence of positive solutions for a singular fractional boundary value problem, Nonlinear Anal. Model. Control. 22(1) (2017), 99–114.10.15388/NA.2017.1.7Suche in Google Scholar

[2] X. Zhang and Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett. 80 (2018), 12–19.10.1016/j.aml.2017.12.022Suche in Google Scholar

[3] X. Hao and H. Wang, Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions, Open Math. 16(1) (2018), 581–596.10.1515/math-2018-0055Suche in Google Scholar

[4] J. Henderson and R. Luca, Boundary value problems for systems of differential, difference and fractional equations. Positive solutions, Elsevier, Amsterdam, 2016.10.1186/s13661-016-0569-8Suche in Google Scholar

[5] T. Abdeljawad, F. Jarad, S. F. Mallak, and J. Alzabut, Lyapunov type inequalities via fractional proportional derivatives and application on the free zero disc of Kilbas–Saigo generalized Mittag–Leffler functions, Eur. Phys. J. Plus. 134 (2019), 247, 1–14.10.1140/epjp/i2019-12772-1Suche in Google Scholar

[6] B. Ahmad and R. Luca, Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Solitons Fractals. 104 (2017), 378–388.10.1016/j.chaos.2017.08.035Suche in Google Scholar

[7] B. Ahmad and R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal. 21(2) (2018), 423–441.10.1515/fca-2018-0024Suche in Google Scholar

[8] B. Ahmad and S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput. 266 (2015), 615–622.10.1016/j.amc.2015.05.116Suche in Google Scholar

[9] S. Aljoudi, B. Ahmad, J. J. Nieto and A. Alsaedi, A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos Solitons Fractals, 91 (2016), 39–46.10.1016/j.chaos.2016.05.005Suche in Google Scholar

[10] L. Guo, L. Liu and Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal. Model. Control. 23(2) (2018), 182–203.10.15388/NA.2018.2.3Suche in Google Scholar

[11] J. Henderson and R. Luca, Systems of Riemann-Liouville fractional equations with multi-point boundary conditions, Appl. Math. Comput. 309 (2017), 303–323.10.1016/j.amc.2017.03.044Suche in Google Scholar

[12] J. Henderson, R. Luca and A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal. 18(2) (2015), 361–386.10.1515/fca-2015-0024Suche in Google Scholar

[13] J. Henderson, R. Luca and A. Tudorache, Existence and nonexistence of positive solutions for coupled Riemann–Liouville fractional boundary value problems, Discrete Dyn. Nat. Soc. 2016(Article ID 2823971) (2016), 1–12.10.1155/2016/2823971Suche in Google Scholar

[14] L. Liu, H. Li, C. Liu and Y. Wu, Existence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary value problems, J. Nonlinear Sci. Appl. 10 (2017), 243–262.10.22436/jnsa.010.01.24Suche in Google Scholar

[15] S. Liu, J. Liu, Q. Dai and H. Li, Uniqueness results for nonlinear fractional differential equations with infinite-point integral boundary conditions, J. Nonlinear Sci. Appl. 10 (2017), 1281–1288.10.22436/jnsa.010.03.37Suche in Google Scholar

[16] R. Luca, Positive solutions for a system of Riemann–Liouville fractional differential equations with multi-point fractional boundary conditions, Bound. Value Prob. 2017(102) (2017), 1–35.10.1186/s13661-017-0833-6Suche in Google Scholar

[17] R. Pu, X. Zhang, Y. Cui, P. Li and W. Wang, Positive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions, J. Funct. Spaces. 2017(Article ID 5892616) (2017), 1–7.10.1155/2017/5892616Suche in Google Scholar

[18] C. Shen, H. Zhou and L. Yang, Positive solution of a system of integral equations with applications to boundary value problems of differential equations, Adv. Difference Equ. 2016(260) (2016), 1–26.10.1186/s13662-016-0953-9Suche in Google Scholar

[19] J. Xu and Z. Wei, Positive solutions for a class of fractional boundary value problems, Nonlinear Anal. Model. Control. 21 (2016), 1–17.10.15388/NA.2016.1.1Suche in Google Scholar

[20] X. Zhang, Positive solutions for a class of singular fractional differential equation with infinite-point boundary conditions, Appl. Math. Lett. 39 (2015), 22–27.10.1016/j.aml.2014.08.008Suche in Google Scholar

[21] H. Zhou, J. Alzabut and L. Yang, On fractional Langevin differential equations with anti-periodic boundary conditions, Eur. Phys. J. Special Topics. 226 (16–18), 3577–3590.10.1140/epjst/e2018-00082-0Suche in Google Scholar

[22] J. Alzabut and C. Tunc, Existence of periodic solutions for Rayleigh equations with state-dependent delay, Electr. J. Differ. Equ. 2012 (77) (2012), 1–8.10.1186/1687-1847-2012-53Suche in Google Scholar

[23] J. R. L. Webb, Positive solutions of nonlinear differential equations with Riemann–Stieltjes boundary conditions, Electron. J. Qual. Theory Differ. Equ. 2016:86 (2016), 13pp.10.14232/ejqtde.2016.1.86Suche in Google Scholar

[24] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. 74 (2006), 673–693.10.1112/S0024610706023179Suche in Google Scholar

[25] J. R. L. Webb and G. Infante, Semi-positone nonlocal boundary value problems of arbitrary order, Commun. Pure Appl. Anal. 9 (2010), 563–581.10.3934/cpaa.2010.9.563Suche in Google Scholar

[26] D. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988.Suche in Google Scholar

[27] R. Leggett and L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688.10.1512/iumj.1979.28.28046Suche in Google Scholar

[28] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland mathematics studies, vol. 204, Elsevier, Amsterdam, 2006.Suche in Google Scholar

Received: 2018-12-11
Accepted: 2019-07-22
Published Online: 2019-08-10
Published in Print: 2019-11-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0376/pdf
Button zum nach oben scrollen