Startseite Analysis of a Delayed Predator–Prey System with Harvesting
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of a Delayed Predator–Prey System with Harvesting

  • Wei Liu und Yaolin Jiang EMAIL logo
Veröffentlicht/Copyright: 11. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article is concerned with a Leslie–Gower predator–prey system with the predator being harvested and the prey having a delay due to the gestation of prey species. By regarding the gestation delay as a bifurcation parameter, we first derive some sufficient conditions on the stability of positive equilibrium point and the existence of Hopf bifurcations basing on the local parametrization method for differential-algebra system. In succession, we also investigate the direction of Hopf bifurcations and the stability of bifurcating periodic solutions on the center manifold by employing the center manifold reduction for functional differential equations. Finally, to verify our theoretical predictions, several numerical simulations are given.

Funding statement: This work is supported by the National Natural Science Foundations of China (Grants No. 11371287 and 61663043), Science and Technology Projects Founded by the Education Department of Jiangxi Province (Grants no. GJJ14774 and GJJ14775).

A Appendix

The local parameterization method given in Ref. [30] is briefly introduced as follows.

Consider the differential-algebra system

(30)X˙(t)=f(X(t)),0=g(X(t)),

where f:RnRn, g:RnRm (n>m), f and g are continuously differentiable functions, f=(f1,f2,,fn)T, g=(g1,g2,,gm)T. Let X be an equilibrium point of (30).

If the differential-algebra system (30) satisfies the following three conditions: ( H1)  rank DXg(X)=m , ( H2)  DXg(X)=(0,P)m×n , where Pm×m is a nonsingular matrix,

then we can use the local parameterization for (30):

(31)X(t)=ψ(Y(t))=X+U0Y(t)+V0h(Y(t)),
(32)g(ψ(Y(t)))=0,

where U0=Inm0n×(nm), V0=0Imn×m, Y(t)=(y1(t),y2(t),,ynm(t))TR(nm), h(Y) is a smooth mapping from R(nm) into Rm.

Substituting X(t)=ψ(Y(t)) into the first equation of (30),

(33)DYψ(Y(t))Y˙(t)=f(ψ(Y(t))).

Differentiating both sides of eq. (31) with respect to Y,

(34)DYψ(Y(t))=U0+V0DYh(Y(t)).

Then left multiply matrix U0T to the both sides of (34), we have

(35)U0TDYψ(Y(t))=Inm.

Differentiating both sides of eq. (32) with respect to Y, we have

(36)DXg(X(t))DYψ(Y(t))=0.

It follows from eqs (35) and (36) that

(37)DYψ(Y(t))=DXg(X(t))U0T10Inm.

Substituting eq. (37) to eq. (33),

(38)DXg(X(t))U0T10InmY˙(t)=f(ψ(Y(t))).

By eqs (33), (36) and (38), we can obtain

(39)0InmY˙(t)=DXg(X(t))f(ψ(Y(t)))U0Tf(ψ(Y(t)))=0U0Tf(ψ(Y(t))).

Hence, the differential-algebra system (30) is equivalent to the parameterized system

(40)Y˙(t)=U0Tf(ψ(Y(t))).

Since X is the equilibrium point of (30), the following equation holds near X:

(41)Y=U0T(XX),

which shows that the equilibrium X of the differential-algebra system (30) corresponds to the equilibrium Y=0 of the local parameterized system (40). According to Taylor series expansion approach, we can calculate the Taylor expansions of U0Tf(ψ(Y(t))) at the point X, and then, in view of eq. (41), the parameterized system (40) can be rewritten as

(42)Y˙=U0TDXf(X)DXg(X)U0T10I(nm)Y+o(Y),

where U0TDXf(X)=(DXf1(X),DXf2(X),,DXfnm(X))T.

B Appendix

To verify the transversality conditions for Hopf bifurcations in model (5), we need the following preparations.

Differentiating the both sides of eq. (14) regarding τ, noticing that λ is a function of τ, we derive

2λdλdτ+kyxMydλdτ+λxeλτλτdλdτ+xeλτdλdτ+eλτλτdλdτkyMxy=0,

which leads to

dλdτ1=2λeλτ+kyxMyeλτ+xλτxτ(kyMxy)λ2x+λkyMxy.

Letting Θ=kyMxy and substituting λ=iω into the above equation,

dλdτ1λ=iω=2ω2(Θcosωτ+ωxsinωτ)ωΘωcosωτΘxsinωτω2x2ω4x2+ω2Θ2+2ω2(Θsinωτωxcosωτ)ωΘx(Θcosωτ+ωxsinωτ)ωΘx+ω3τx2+τωΘ2ω4x2+ω2Θ2i.

By combining with eqs (16) and (17), we can calculate that

(43)Redλdτ1λ=iω=Θ2+2ω2x22kxy2x4ω2x4+x2Θ2+τΘ2x2+Θ(ω2x+ky2x3)+ω2τx4ω3x4+ωx2Θ2i.

From eq. (43),

(44)signRedλdτλ=iω=signRedλdτ1λ=iω=signΘ2+2ω2x22kxy2x4.

C Appendix

The coefficients g20, g11, g02 and g21 in eq. (27) are calculated as follows.

In view of (26), we derive

(45)g(z,zˉ)=qˉ(0)F(z,zˉ)=1Dˉτn(1,q2ˉ)F110F220,

where

F110=y1t2(1)y1t(0)y2t(0)+,F220=ky2x3y1t2(0)+2kyx2y1t(0)y2t(0)+(Mkx2b2c2My2+e2M(c+Ey)42[bcye(c+Ey)2]2bce(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2)y2t2(0)+.

From eq. (25) and the center manifold reduction for Hopf bifurcation in Ref. [24], we have

(46)y1t(0)=z+zˉ+W20(1)(0)z22+W11(1)(0)zzˉ+W02(1)(0)zˉ22,y2t(0)=q2z+qˉ2zˉ+W20(2)(0)z22+W11(2)(0)zzˉ+W02(2)(0)zˉ22,y1t(1)=zeiωτn+zˉeiωτn+W20(1)(1)z22+W11(1)(1)zzˉ+W02(1)(1)zˉ22.

Substituting eq. (46) to eq. (45), we get

g(z,zˉ)=τnDˉ{q2ˉ[zeiωτn+zˉeiωτn+W20(1)(1)z22+W11(1)(1)zzˉ+W02(1)(1)zˉ22]2q2ˉ[z+zˉ+W20(1)(0)z22+W11(1)(0)zzˉ+W02(1)(0)zˉ22]×[q2z+qˉ2zˉ+W20(2)(0)z22+W11(2)(0)zzˉ+W02(2)(0)zˉ22]ky2x3[z+zˉ+W20(1)(0)z22+W11(1)(0)zzˉ+W02(1)(0)zˉ22]2+2kyx2[z+zˉ+W20(1)(0)z22+W11(1)(0)zzˉ+W02(1)(0)zˉ22]×[q2z+qˉ2zˉ+W20(2)(0)z22+W11(2)(0)zzˉ+W02(2)(0)zˉ22]+(Mkx2b2c2My2+e2M(c+Ey)42[bcye(c+Ey)2]2bce(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2)×[q2z+qˉ2zˉ+W20(2)(0)z22+W11(2)(0)zzˉ+W02(2)(0)zˉ22]2+},

i.e.,

g(z,zˉ)=τnDˉ{z2[e2iωτnq2kq2ˉy2x3+2kq2q2ˉyx2+2b2c2Mq22q2ˉy2+e2Mq22q2ˉ(c+Ey)42[bcye(c+Ey)2]2+Mq22q2ˉkq22q2ˉx+bceq22q2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2]+zzˉ[22Re(q2)2kq2ˉy2x3+4kq2ˉyx2Re(q2)+2Mq2q2ˉq2ˉ2kq2q2ˉq2ˉx+2b2c2Mq2q2ˉq2ˉy2+e2Mq2q2ˉq2ˉ(c+Ey)4[bcye(c+Ey)2]2
(47)+bceq2q2ˉq2ˉ(c+Ey)[c(E3My)yE(E+My)][bcye(c+Ey)2]2]+zˉ2[e2iωτnq2ˉkq2ˉy2x3+2kq2ˉq2ˉyx2+Mq2ˉ2q2ˉkq2ˉ2q2ˉx+2b2c2Mq2ˉ2q2ˉy2+e2Mq2ˉ2q2ˉ(c+Ey)42[bcye(c+Ey)2]2+bceq2ˉ2q2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2]+z2zˉ[(q22kq2ˉy2x3+2kq2q2ˉyx2)W11(1)(0)+(1+2kq2ˉyx2+2q2q2ˉM2kq2q2ˉx+2b2c2Mq2q2ˉy2+e2Mq2q2ˉ(c+Ey)4[bcye(c+Ey)2]2+bceq2q2ˉ(c+Ey)[c(E3My)yE(E+My)][bcye(c+Ey)2]2)W11(2)(0)+(q2ˉ2kq2ˉy2x3+kq2ˉq2ˉyx2)W20(1)(0)+(12+kq2ˉyx2+Mq2ˉq2ˉkq2ˉq2ˉx2+2b2c2Mq2ˉq2ˉy2+e2Mq2ˉq2ˉ(c+Ey)42[bcye(c+Ey)2]2+bceq2ˉq2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2)W20(2)(0)2eiωτnW11(1)(1)eiωτnW20(1)(1)]+}.

Comparing the coefficients of eqs (27) and (47), we have

g20=2τnDˉ[e2iωτnq2kq2ˉy2x3+2kq2q2ˉyx2+2b2c2Mq22q2ˉy2+e2Mq22q2ˉ(c+Ey)42[bcye(c+Ey)2]2+Mq22q2ˉkq22q2ˉx+bceq22q2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2],g11=τnDˉ[22Re(q2)2kq2ˉy2x3+4kq2ˉyx2Re(q2)+2Mq2q2ˉq2ˉ2kq2q2ˉq2ˉx+2b2c2Mq2q2ˉq2ˉy2+e2Mq2q2ˉq2ˉ(c+Ey)4[bcye(c+Ey)2]2+bceq2q2ˉq2ˉ(c+Ey)[c(E3My)yE(E+My)][bcye(c+Ey)2]2],g02=2τnDˉ[e2iωτnq2ˉkq2ˉy2x3+2kq2ˉq2ˉyx2+Mq2ˉ2q2ˉ
(48)kq2ˉ2q2ˉx+2b2c2Mq2ˉ2q2ˉy2+e2Mq2ˉ2q2ˉ(c+Ey)42[bcye(c+Ey)2]2+bceq2ˉ2q2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2],g21=2τnDˉ[(q22kq2ˉy2x3+2kq2q2ˉyx2)W11(1)(0)+(1+2kq2ˉyx2+2q2q2ˉM2kq2q2ˉx+2b2c2Mq2q2ˉy2+e2Mq2q2ˉ(c+Ey)4[bcye(c+Ey)2]2+bceq2q2ˉ(c+Ey)[c(E3My)yE(E+My)][bcye(c+Ey)2]2)W11(2)(0)+(q2ˉ2kq2ˉy2x3+kq2ˉq2ˉyx2)W20(1)(0)+(12+kq2ˉyx2+Mq2ˉq2ˉkq2ˉq2ˉx2+2b2c2Mq2ˉq2ˉy2+e2Mq2ˉq2ˉ(c+Ey)42[bcye(c+Ey)2]2+bceq2ˉq2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2)W20(2)(0)2eiωτnW11(1)(1)eiωτnW20(1)(1)].

Now we have derived the concrete expressions of g20, g11 and g02. However, from eq. (48), we can see that W20(θ) and W11(θ) appear in g21. In order to obtain the concrete expression of g21, we still need to calculate W20(θ) and W11(θ).

According to the algorithms of Hassard et al.[24], we have

(49)W20(θ)=ig20ωτnq(0)eiωτnθ+igˉ023ωτnqˉ(0)eiωτnθ+G1e2iωτnθ,W11(θ)=ig11ωτnq(0)eiωτnθ+igˉ11ωτnqˉ(0)eiωτnθ+G2,

where

G1=2iω+xe2iωτnxky2x22iω+kyxMybcy(EMy)+eMy(c+Ey)2bcye(c+Ey)21×2G11G21,G2=xxky2x2kyxMybcy(EMy)+eMy(c+Ey)2bcye(c+Ey)21×2H11H21,

with

G11=e2iωτnq2,G21=ky2x3+2kq2yx2+Mq22kq22x2b2c2Mq22y2+e2Mq22(c+Ey)42[bcye(c+Ey)2]2bceq22(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2,H11=1Re(q2),H21=ky2x3+2kyx2Re(q2)+Mq2q2ˉkq2q2ˉx2b2c2Mq2q2ˉy2+e2Mq2q2ˉ(c+Ey)42[bcye(c+Ey)2]2bceq2q2ˉ(c+Ey)[c(E3My)yE(E+My)]2[bcye(c+Ey)2]2.

Furthermore, we can calculate the concrete expressions of matrices G1 and G2, which take the form of

G1=4G11iω+2kyx2My2bcy(EMy)+2eMy(c+Ey)2bcye(c+Ey)2G112xG21Ξ4G21iω+2xe2iωτnG21+2ky2x2G11Ξ2×1,G2=2kyx2My2bcy(EMy)+2eMy(c+Ey)2bcye(c+Ey)2H112xH21ky+ky2xMxybcxy(EMy)+eMxy(c+Ey)2bcye(c+Ey)22ky2x2H11+2xH21ky+ky2xMxybcxy(EMy)+eMxy(c+Ey)2bcye(c+Ey)22×1,

where

Ξ=ky2x+kyMxybcxy(EMy)+eMxy(c+Ey)2bcye(c+Ey)2e2iωτn2iωMy+bcy(EMy)+eMy(c+Ey)2bcye(c+Ey)2kyxxe2iωτn4ω2.

Accordingly, we can derive the concrete expressions of W20(θ) and W11(θ) by substituting the above G1 and G2 into eq. (49). Afterward, substituting W20(θ) and W11(θ) into the expression of g21 in eq. (48). And then, we can obtain the concrete expression of g21. By now, we have determined the concrete expressions of g20, g11, g02 and g21.

Acknowledgements

The authors are greatly indebted to the anonymous expert referees and the editor for their careful reading and insightful comments that led to truly significant improvement of the manuscript.

References

[1] Berryman A. A., The origins and evolution of predator-prey theory, Ecology 73 (1992), 1530-1535.10.2307/1940005Suche in Google Scholar

[2] Leslie P. H., Gower J. C., The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika 47 (1960), 219-234.10.1093/biomet/47.3-4.219Suche in Google Scholar

[3] Chen L. S., Mathematical models and methods in ecology, Press Science, Beijing, 1988. (in Chinese).Suche in Google Scholar

[4] Kot M., Elements of Mathematical Biology, Cambridge University Press, Cambridge, 2001.Suche in Google Scholar

[5] Vasilova M., Asymptotic behavior of a stochastic Gilpin-Ayala predator-prey system with time-dependent delay, Math. Comput. Modell. 57 (2013), 764-781.10.1016/j.mcm.2012.09.002Suche in Google Scholar

[6] Teng Z. D., Chen L., Global asymptotic stability of periodic Lotka-Volterra systems with delays, Nonlinear Analysis: Theory, Method. Appl. 45 (2001), 1081-1095.10.1016/S0362-546X(99)00441-1Suche in Google Scholar

[7] Al Noufaey K. S., Marchant T. R., Edwards M. P., The diffusive Lotka-Volterra predator-prey system with delay, Math. Biosci. 270 (2015), 30-40.10.1016/j.mbs.2015.09.010Suche in Google Scholar PubMed

[8] Tripathi J. P., Abbas S., Thakur M., A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge, Commun. Nonl. Sci. Numer. Simu. 22 (2015), 427-450.10.1016/j.cnsns.2014.08.018Suche in Google Scholar

[9] Karaoglu E., Merdan H., Hopf bifurcations of a ratio-dependent predator-prey model involving two discrete maturation time delays, Chaos, Solitons & Fractals 68 (2014), 159-168.10.1016/j.chaos.2014.07.011Suche in Google Scholar

[10] Adak D., Bairagi N., Complexity in a predator-prey-parasite model with nonlinear incidence rate and incubation delay, Chaos, Solitons & Fractals 81 (2015), 271-289.10.1016/j.chaos.2015.09.028Suche in Google Scholar

[11] Martin A., Ruan S., Predator-prey models with delay and prey harvesting, J. Math. Biol. 43 (2001), 247-267.10.1007/s002850100095Suche in Google Scholar PubMed

[12] Al-Omari J. F. M., The effect of state dependent delay and harvesting on a stage-structured predator-prey model, Appl. Math. Comput. 271 (2015), 142-153.10.1016/j.amc.2015.08.119Suche in Google Scholar

[13] Li Y., Wang M. X., Hopf bifurcation and global stability of a delayed predator-prey model with prey harvesting, Comput. Math. Appl. 69 (2015), 398-410.10.1016/j.camwa.2015.01.003Suche in Google Scholar

[14] Zhang X. B., Zhao H. Y., Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters, J. Theor. Biol. 363 (2014), 390-403.10.1016/j.jtbi.2014.08.031Suche in Google Scholar

[15] Kar T. K., Pahari U. K., Non-selective harvesting in prey-predator models with delay, Commun. Nonl. Sci. Numer. Simu. 11 (2006), 499-509.10.1016/j.cnsns.2004.12.011Suche in Google Scholar

[16] Zhang G. D., Shen Y., Chen B. S., Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dyn. 73 (2013), 2119-2131.10.1007/s11071-013-0928-2Suche in Google Scholar

[17] Chen B. S., Chen J. J., Bifurcation and chaotic behavior of a discrete singular biological economic system, Appl. Math. Comput. 219 (2012), 2371-2386.10.1016/j.amc.2012.07.043Suche in Google Scholar

[18] Wu X. Y., Chen B. S., Bifurcations and stability of a discrete singular bioeconomic system, Nonlinear Dyn. 73 (2013), 1813-1828.10.1007/s11071-013-0906-8Suche in Google Scholar

[19] Zhang G. D., Shen Y., Chen B. S., Bifurcation analysis in a discrete differential-algebraic predator-prey system, Appl. Mathe. Modell. 38 (2014), 4835-4848.10.1016/j.apm.2014.03.042Suche in Google Scholar

[20] Liu W. Y., C. Fu J., B. Chen S., Stability and Hopf bifurcation of a predator-prey biological economic system with nonlinear harvesting rate, Int. J. Nonlinear Sci. Numer. Simul. 16 (2015), 249-258.10.1515/ijnsns-2013-0098Suche in Google Scholar

[21] Ruan S., Wei J., On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls, Syst. Ser. A Math. Anal. 10 (2003), 863-874.Suche in Google Scholar

[22] Hale J. K., Theory of functional differential equations, Springer, New York, 1997.Suche in Google Scholar

[23] Cooke K. L., Grossman Z., Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl. 86 (1982), 592-627.10.1016/0022-247X(82)90243-8Suche in Google Scholar

[24] Hassard B., Kazarinoff D., Wan Y., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.Suche in Google Scholar

[25] Gordon H. S., Economic theory of a common property resource: the fishery, J. Polit. Econ. 62 (1954), 124-142.10.1086/257497Suche in Google Scholar

[26] Mankiw N. G., Principles of Economics, Peking University Press, Beijing, 2015.Suche in Google Scholar

[27] Faria T., Maglhalães L. T., Normal form for retarded functional differential equations with parameters and applications to Hopf Bifurcation, J. Differ. Equ. 122 (1995), 181-200.10.1006/jdeq.1995.1144Suche in Google Scholar

[28] Faria T., Maglhalães L. T., Normal form for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Differ. Equ. 122 (1995), 201-224.10.1006/jdeq.1995.1145Suche in Google Scholar

[29] Guckenheimer J., Holmes P., Oscillations Nonlinear, Systems Dynamical, and Bifurcations of Vector Fields, Springer, New York, USA, 1983.10.1007/978-1-4612-1140-2Suche in Google Scholar

[30] Chen B. S., X. Liao X., Y. Liu Q., Normal forms and bifurcations for the differential-algebraic systems, Acta Math. Appl. Sin. 23 (2000), 429-443. (in Chinese).Suche in Google Scholar

[31] Nussbaum R. D., Periodic solutions of some nonlinear autonomous functional equations, Ann. Mat. Pura Appl. 10 (1974), 263-306.10.1007/BF02417109Suche in Google Scholar

[32] Erbe L. H., Geba K., Krawcewicz W., Wu J., S1-degree and global Hopf bifurcations, J. Differ. Equ. 98 (1992), 277-298.10.1016/0022-0396(92)90094-4Suche in Google Scholar

[33] Reich S., On the local qualitative behavior of differential-algebraic equations, Circ. Syst. Sig. Process 14 (1995), 427-443.10.1007/BF01260330Suche in Google Scholar

[34] Venkatasubramanian V., Schättler H., Zaborszky J., Local bifurcation and feasibility regions in differential-algebraic systems, Trans IEEE. Automat. Contr. 40 (1995), 1992-2013.10.1109/9.478226Suche in Google Scholar

Received: 2017-04-24
Accepted: 2018-01-30
Published Online: 2018-05-11
Published in Print: 2018-06-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. A Robust Algorithm for Nonlinear Variable-Order Fractional Control Systems with Delay
  3. Numerical Methods for the Derivative Nonlinear Schrödinger Equation
  4. Lax Integrability and Exact Solutions of a Variable-Coefficient and Nonisospectral AKNS Hierarchy
  5. Modeling of Supersonic/Hypersonic Boundary Layer Transition Using a Single-Point Approach
  6. A Novel Macromodel based on Krylov Subspace Projection Method for Micromixers with Serpentine Channels
  7. Approaches to the Numerical Estimates of Grid Convergence of NSE in the Presence of Singularities
  8. Numerical Solutions of Stochastic Volterra–Fredholm Integral Equations by Hybrid Legendre Block-Pulse Functions
  9. Positivity and Stability of Standard and Fractional Descriptor Continuous-Time Linear and Nonlinear Systems
  10. Dynamics of Almost Periodic Solution for a Delayed Facultative Mutualism Model Involving Negative Feedback Terms
  11. Controllability of Fractional Evolution Inclusions with Noninstantaneous Impulses
  12. Analysis of a Delayed Predator–Prey System with Harvesting
  13. Nonlinear Bending of Rectangular Magnetoelectroelastic Thin Plates with Linearly Varying Thickness
  14. Numerical Method for a Class of Nonlinear Singularly Perturbed Delay Differential Equations Using Parametric Cubic Spline
  15. Numerical Simulation for Shale Gas Flow in Complex Fracture System of Fractured Horizontal Well
  16. Real-Time Control of a Rotary Inverted Pendulum using Robust LQR-based ANFIS Controller
  17. A Study of an Extended Generalized (2+1)-dimensional Jaulent–Miodek Equation
  18. RBFPUM with QR Factorization for Solving Water Flow Problem in Multilayered Soil
  19. Classical Magnetism and an Integral Formula Involving Modified Bessel Functions
  20. Lie Symmetry Analysis of Boundary Layer Stagnation-Point Flow and Heat Transfer of Non-Newtonian Power-Law Fluids Over a Nonlinearly Shrinking/Stretching Sheet with Thermal Radiation
Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0094/html
Button zum nach oben scrollen