Home A Robust Algorithm for Nonlinear Variable-Order Fractional Control Systems with Delay
Article
Licensed
Unlicensed Requires Authentication

A Robust Algorithm for Nonlinear Variable-Order Fractional Control Systems with Delay

  • José António Tenreiro Machado and Behrouz Parsa Moghaddam EMAIL logo
Published/Copyright: March 14, 2018

Abstract

In this paper, we propose a high-accuracy linear B-spline finite-difference approximation for variable-order (VO) derivative. We consider VO fractional differentiation as a control parameter for improving the stability in systems exhibiting vibrations. The method is applied to nonlinear feedback with VO fractional derivative. The results demonstrate the efficiency and high accuracy of the novel algorithm.

References

[1] Chen Y. M., Liu Q. X., Liu J. K., Steady state response analysis for fractional dynamic systems based on memory-free principle and harmonic balancing, Int. J. Non-Linear Mech. 81 (2016), 154–164.10.1016/j.ijnonlinmec.2016.01.012Search in Google Scholar

[2] Liu X., Hong L., Jiang J., Tang D., Yang L., Global dynamics of fractional-order systems with an extended generalized cell mapping method, Nonlinear Dyn. 83 (3) (2016), 1419–1428.10.1007/s11071-015-2414-5Search in Google Scholar

[3] Machado J. T., Kiryakova V., Mainardi F., Recent History of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (3) (2011), 1140–1153.10.1016/j.cnsns.2010.05.027Search in Google Scholar

[4] Machado J. T., Galhano A. M., Trujillo J. J., Science metrics on fractional calculus development since 1966, Fractional Calculus Appl. Anal. 16 (2) (2013), 479–500.10.2478/s13540-013-0030-ySearch in Google Scholar

[5] Machado J. T., Mainardi F., Kiryakova V., Fractional Calculus: Quo Vadimus? (Where Are We Going?) Contributions to round table discussion held at ICFDA 2014, Fractional Calculus Appl. Anal. 18 (2) (2015), 495–526.10.1515/fca-2015-0031Search in Google Scholar

[6] Lopes A. M., Machado J. T., Application of fractional techniques in the analysis of forest fires, Nonlinear Sci Int. J.. Numer. Simul. 17 (7–8) (2016), 381–390.10.1515/ijnsns-2016-0026Search in Google Scholar

[7] De la Sen M., About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory, Fixed Point Theory Appl. 2011 (1) (2011).10.1155/2011/867932Search in Google Scholar

[8] De la Sen M., Hedayatib V., Atanib Y. G., Rezapourb S., The existence and numerical solution for a k-dimensional system of multi-term fractional integro-differential equations, Nonlinear Anal.–Model. Control 22(2) (2017), 188–209.10.15388/NA.2017.2.4Search in Google Scholar

[9] Momani S., Qaralleh R., An efficient method for solving systems of fractional integro–differential equations, Comput. Math. Appl. 52 (3) (2006), 459–70.10.1016/j.camwa.2006.02.011Search in Google Scholar

[10] De la Sen M., On Nonnegative Solutions of fractional-linear time-varying dynamic systems with delayed dynamics, Abstr. Appl. Anal. 2014 (2014).10.1155/2014/247375Search in Google Scholar

[11] Yang X. J., Local fractional functional analysis and its applications, Asian Academic Publisher, Hong Kong, 2011.Search in Google Scholar

[12] Yang X. J., Advanced local fractional calculus and its applications, World Science, New York, NY, USA, 2012.Search in Google Scholar

[13] Dabiri A., Butcher E. A., Nazari M., One-dimensional impact problem in fractional viscoelastic models, ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Conference Engineering, IDETC/CIE, 2016.Search in Google Scholar

[14] Dabiri A., Butcher E. A., Nazari M., Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation, Sound Vibr J.. 388 (2017), 230–244.10.1016/j.jsv.2016.10.013Search in Google Scholar

[15] Dabiri A., Nazari M., Butcher E. A., The spectral parameter estimation method for parameter identification of linear fractional order systems, In Conference American Control (ACC), (2016), 2772–2777.10.1109/ACC.2016.7525338Search in Google Scholar

[16] Diethelm K., Freed A. D., The FracPECE subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches Rechnen 1999 (1998), 57–71.Search in Google Scholar

[17] Weilbeer M., Efficient numerical methods for fractional differential equations and their analytical background, Papierflieger, 2005.Search in Google Scholar

[18] Dabiri A., Butcher E. A., Efficient modified Chebyshev differentiation matrices for fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 50 (2017), 284–310.10.1016/j.cnsns.2017.02.009Search in Google Scholar

[19] Samko S. G., Fractional integration and differentiation of variable order, Anal. Math. 21 (3) (1995), 213–236.10.1007/BF01911126Search in Google Scholar

[20] Lorenzo C. F., Hartley T. T., Variable order and distributed order fractional operators, Nonlinear Dyn. 29 (1–4) (2002), 57–98.10.1023/A:1016586905654Search in Google Scholar

[21] .Sun H. G, Chen W., Chen Y. Q., Variable-order fractional differential operators in anomalous diffusion modeling, Physica A 388 (21) (2009), 4586–4592.10.1016/j.physa.2009.07.024Search in Google Scholar

[22] Moghaddam B. P., Machado J. A. T., Behforooz H., An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos, Solitons Fractals, 2017.10.1016/j.chaos.2017.03.065Search in Google Scholar

[23] Coimbra C. F. M., Mechanics with variable order differential operators, Annalen der Physik 12 (11–12) (2003), 692–703.10.1002/andp.200310032Search in Google Scholar

[24] Soon S. C. M., Coimbra C. F. M., Kobayashi M. H., The variable viscoelasticity oscillator, Annalen der Physik 14 (6) (2005), 378–389.10.1002/andp.200410140Search in Google Scholar

[25] Yang X. J., Machado J. A. T., A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A 481 (2017), 276–283.10.1016/j.physa.2017.04.054Search in Google Scholar

[26] Sun H. W. H. G., Chen W., Chen Y., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top. Perspect. Fractional. Dynam. Control 193 (185) (2011), 185–192.10.1140/epjst/e2011-01390-6Search in Google Scholar

[27] Sheng H., Sun H., Coopmans C., Chen Y., Bohannan G. W., A physical experimental study of variable-order fractional integrator and differentiator, Eur. Phys. JSpec. Top 193 (1) (2011), 93–104.10.1140/epjst/e2011-01384-4Search in Google Scholar

[28] Tang H., Wang D., Huang R., Pei X., Chen W., A new rock creep model based on variable-order fractional derivatives and continuum damage mechanics, Bull. Eng. Geol. Environ. (2017).10.1007/s10064-016-0992-1Search in Google Scholar

[29] Sheng H., Sun H., Coopmans C., Chen Y., Bohannan G. W., Physical experimental study of variable-order fractional integrator and differentiator, Proceedings of The 4th IFAC Workshop Fractional Differentiation and its Applications FDA’10 (2010).Search in Google Scholar

[30] Ramirez L., Coimbra C., On the variable order dynamics of the nonlinear wake caused by a sedimenting particle, Physica D. 240 (13) (2011), 1111–1118.10.1016/j.physd.2011.04.001Search in Google Scholar

[31] Moghaddam B. P., Machado J. A. T., Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput. 71 (3) (2017), 1351–1374.10.1007/s10915-016-0343-1Search in Google Scholar

[32] Moghaddam B. P., Machado J. A. T., SM-algorithms for approximating the variable-order fractional derivative of high order, Fundamenta Informaticae 151 (1–4) (2017), 293–311.10.3233/FI-2017-1493Search in Google Scholar

[33] Moghaddam B. P., Mostaghim Z. S., Modified finite difference method for solving fractional delay differential equations, Bol. Sociedade Paranaense Matemtica 35 (2) (2017), 49–58.10.5269/bspm.v35i2.25081Search in Google Scholar

[34] Moghaddam B. P., Yaghoobi S., Machado J. T., An extended predictor-corrector algorithm for variable-order fractional delay differential equations, J. Comput. Nonlinear Dyn. (2016).10.1115/1.4032574Search in Google Scholar

[35] Moghaddam B. P., Mostaghim Z. S., A novel matrix approach to fractional finite difference for solving models based on nonlinear fractional delay differential equations, Ain Shams Eng. J. 5 (2) (2014), 585–594.10.1016/j.asej.2013.11.007Search in Google Scholar

[36] Daftardar-Gejji V., Sukale Y., Bhalekar S., Solving fractional delay differential equations: a new approach, Fractional Calculus Appl. Anal. 18 (2) (2015), 400–418.10.1515/fca-2015-0026Search in Google Scholar

[37] Morgado M. L., Ford N. J., Lima P. M., Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math. 252 (2013), 159–168.10.1016/j.cam.2012.06.034Search in Google Scholar

[38] Srinivasan V., Sukavanam N., Sensitivity analysis of nonlinear fractional order control systems with state delay, Int. J. Comput. Math. 93 (1) (2016), 160–178.10.1080/00207160.2014.996558Search in Google Scholar

[39] Muresan C. I., Dutta A., Dulf E. H., Pinar Z., Maxim A., Ionescu C. M., Tuning algorithms for fractional order internal model controllers for time delay processes, Int. J. Control 89 (3) (2016), 579–593.10.1080/00207179.2015.1086027Search in Google Scholar

[40] KWON W. H., Lee G. I. W., Kim S. W., Performance improvement using time delays in multivariable controller design, Control Int. J. 52 (6) (1990), 1455–1473.10.1080/00207179008953604Search in Google Scholar

[41] Shanmugathasan N., Johnston R. D., Exploitation of time delays for improved process control, Int. J. Control 48 (3) (1988), 1137–1152.10.1080/00207178808906240Search in Google Scholar

[42] Suh I., Bien Z., Proportional minus delay controller, IEEE Trans. Aut. Control AC-24 (1979), 370–372.10.1109/TAC.1979.1102024Search in Google Scholar

[43] Suh H., Bien Z., Use of time-delay actions in the controller design, IEEE Trans. Aut. Control AC-25 (1980), 600–603.10.1109/TAC.1980.1102347Search in Google Scholar

[44] Butcher E. A., Dabiri A., Nazari M., Stability and Control of Fractional Periodic Time-Delayed Systems, pp. 107–125, Springer International Publishing, 2017.10.1007/978-3-319-53426-8_8Search in Google Scholar

[45] Machado J. A. T., Fractional-order derivative approximations in discrete-time control systems, Syst. Anal. Modell. Simul. 34 (4) (1999), 419–434.Search in Google Scholar

[46] Podlubny I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press 198 1988.Search in Google Scholar

[47] Podlubny I., Fractional-order systems and PID-controllers, IEEE Trans. Autom. Control 44 (1) (1999), 208–214.10.1109/9.739144Search in Google Scholar

[48] Ingman D., J. Suzdalnitsky, M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena, J. Appl. Mech. 67 (2) (2000), 383–390.10.1115/1.1304916Search in Google Scholar

[49] Matignon D., Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl. 2 (1996).Search in Google Scholar

[50] Machado J. A. T., Lopes A. M., A fractional perspective on the trajectory control of redundant and hyper-redundant robot manipulators, Appl. Math. Modell. (2016).Search in Google Scholar

[51] Dabiri A., Butcher E. A., Poursina M., Fractional Delayed Control Design for Linear Periodic Systems, In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Conference Engineering, (2016), V006T09A063–V006T09A063.Search in Google Scholar

[52] Wang Z. H., Zheng Y. G., The optimal form of the fractional-order difference feedbacks in enhancing the stability of a sdof vibration system, Sound Vib J.. 326 (3) (2009), 476–488.10.1016/j.jsv.2009.07.003Search in Google Scholar

[53] Smith H., An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer, New York, 2010.10.1007/978-1-4419-7646-8_1Search in Google Scholar

[54] Henry R. J., Masoud Z. N., Nayfeh A. H., Mook D. T., Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation, J. Vib. Control 7 (8) (2001), 1253–1264.10.1177/107754630100700807Search in Google Scholar

[55] Masoud Z. N., Nayfeh A. H., Al-Mousa A., Delayed position feedback controller for the reduction of payload pendulations of rotary cranes, J. Vib. Control 9 (2003), 257–277.10.1177/1077546303009001750Search in Google Scholar

[56] Pyragas K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A 170 (6) (1992), 421–428.10.1016/0375-9601(92)90745-8Search in Google Scholar

Received: 2016-07-08
Accepted: 2018-02-04
Published Online: 2018-03-14
Published in Print: 2018-06-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. A Robust Algorithm for Nonlinear Variable-Order Fractional Control Systems with Delay
  3. Numerical Methods for the Derivative Nonlinear Schrödinger Equation
  4. Lax Integrability and Exact Solutions of a Variable-Coefficient and Nonisospectral AKNS Hierarchy
  5. Modeling of Supersonic/Hypersonic Boundary Layer Transition Using a Single-Point Approach
  6. A Novel Macromodel based on Krylov Subspace Projection Method for Micromixers with Serpentine Channels
  7. Approaches to the Numerical Estimates of Grid Convergence of NSE in the Presence of Singularities
  8. Numerical Solutions of Stochastic Volterra–Fredholm Integral Equations by Hybrid Legendre Block-Pulse Functions
  9. Positivity and Stability of Standard and Fractional Descriptor Continuous-Time Linear and Nonlinear Systems
  10. Dynamics of Almost Periodic Solution for a Delayed Facultative Mutualism Model Involving Negative Feedback Terms
  11. Controllability of Fractional Evolution Inclusions with Noninstantaneous Impulses
  12. Analysis of a Delayed Predator–Prey System with Harvesting
  13. Nonlinear Bending of Rectangular Magnetoelectroelastic Thin Plates with Linearly Varying Thickness
  14. Numerical Method for a Class of Nonlinear Singularly Perturbed Delay Differential Equations Using Parametric Cubic Spline
  15. Numerical Simulation for Shale Gas Flow in Complex Fracture System of Fractured Horizontal Well
  16. Real-Time Control of a Rotary Inverted Pendulum using Robust LQR-based ANFIS Controller
  17. A Study of an Extended Generalized (2+1)-dimensional Jaulent–Miodek Equation
  18. RBFPUM with QR Factorization for Solving Water Flow Problem in Multilayered Soil
  19. Classical Magnetism and an Integral Formula Involving Modified Bessel Functions
  20. Lie Symmetry Analysis of Boundary Layer Stagnation-Point Flow and Heat Transfer of Non-Newtonian Power-Law Fluids Over a Nonlinearly Shrinking/Stretching Sheet with Thermal Radiation
Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0094/html
Scroll to top button