Startseite Multiple Soliton Solutions, Soliton-Type Solutions and Hyperbolic Solutions for the Benjamin–Bona–Mahony Equation with Variable Coefficients in Rotating Fluids and One-Dimensional Transmitted Waves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiple Soliton Solutions, Soliton-Type Solutions and Hyperbolic Solutions for the Benjamin–Bona–Mahony Equation with Variable Coefficients in Rotating Fluids and One-Dimensional Transmitted Waves

  • Zhi-Fang Zeng und Jian-Guo Liu EMAIL logo
Veröffentlicht/Copyright: 19. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

With the help of symbolic computation, the Benjamin–Bona–Mahony (BBM) equation with variable coefficients is presented, which was proposed for the first time by Benjamin as the regularized long-wave equation and originally derived as approximation for surface water waves in a uniform channel. By employing the improved (G/G)-expansion method, the truncated Painlevé expansion method, we derive new auto-Bäcklund transformation, hyperbolic solutions, a variety of traveling wave solutions, soliton-type solutions and two solitary wave solutions of the BBM equation. These obtained solutions possess abundant structures. The figures corresponding to these solutions are illustrated to show the particular localized excitations and the interactions between two solitary waves.

Funding statement: National Natural Science Foundation of China (Grant/Award Number: 61562045).

Acknowledgments

The authors would like to thank the editor and the referee for their timely and valuable comments.

References

[1] J. G. Liu, Y. Z. Li, and G. M. Wei, Auto-Bäcklund transformation and soliton-typed solutions of the generalized variable-coefficient KP equation (in Chinese), Chin. Phys. Lett. 23 (2006), 1670–1673.10.1088/0256-307X/23/7/004Suche in Google Scholar

[2] M. G. Asaad and W. X. Ma, Pfaffian solutions to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart, Appl. Math. Comput. 218 (2012), 5524–5542.10.1016/j.amc.2011.11.042Suche in Google Scholar

[3] M. G. Asaad and W. X. Ma, Extended gram-type determinant, wave and rational solutions to two (3+1)-dimensional nonlinear evolution equations, Appl. Math. Comput. 219 (2012), 213–225.10.1016/j.amc.2012.06.007Suche in Google Scholar

[4] W. X. Ma and Z. N. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput. 218 (2012), 11871–11879.10.1016/j.amc.2012.05.049Suche in Google Scholar

[5] W. X. Ma, Y. Zhang, Y. N. Tang, and J. Y. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput. 218 (2012), 7174–7183.10.1016/j.amc.2011.12.085Suche in Google Scholar

[6] A. M. Wazwaz, Four (2+1)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation, Appl. Math. Comput. 215 (2010), 3631–3644.10.1016/j.amc.2009.11.001Suche in Google Scholar

[7] W. X. Ma and E. G. Fan, Linear superposition principle applying to Hirota bilinear equations, Commun. Theor. Phys. 61 (2011), 950–959.10.1016/j.camwa.2010.12.043Suche in Google Scholar

[8] A. M. Wazwaz, N-soliton solutions for shallow water waves equations in (1+1) and (2+1) dimensions, Appl. Math. Comput. 217 (2011), 8840–8845.10.1016/j.amc.2011.03.048Suche in Google Scholar

[9] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-De Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.10.1103/PhysRevLett.19.1095Suche in Google Scholar

[10] X. B. Hu and W. X. Ma, Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton- like solutions, Phys. Lett. A 293 (2002), 161–165.10.1016/S0375-9601(01)00850-7Suche in Google Scholar

[11] H. Woopyo and Y. D. Jung, Auto-Bäcklund transformation and analytic solutions for general variable-coefficient KdV equation, Phys. Lett. A 257 (1999), 149–152.10.1016/S0375-9601(99)00322-9Suche in Google Scholar

[12] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Trans. Roy. Soc. (Lond.) Ser. A 272 (1992), 47–78.10.1098/rsta.1972.0032Suche in Google Scholar

[13] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag. 39 (1895), 422–443.10.1080/14786449508620739Suche in Google Scholar

[14] J. Meiss and W. Horton, Fluctuation spectra of drift wave soliton gas, Phys. Fluid. 25 (1982), 1838–1843.10.1063/1.863662Suche in Google Scholar

[15] C. Yan, Regularized long wave equation and inverse scattering transform, J. Math. Phys. 24 (1993), 2618–2630.10.1063/1.530087Suche in Google Scholar

[16] P. J. Olver, Applications of Lie groups to differential equations, New York: Springer-Verlag, 1993.10.1007/978-1-4612-4350-2Suche in Google Scholar

[17] K. Singh, R. K. Gupta, and S. Kumar, Benjamin-Bona-Mahony (BBM) equation with variable coefficients: Similarity reductions and Painlevé analysis, Appl. Math. Comput. 217 (2011), 7021–7027.10.1016/j.amc.2011.02.003Suche in Google Scholar

[18] A. Bekir, Application of the (G'/G) expansion method for nonlinear evolution equations, Phys. Lett. A 372 (2008), 3400–3406.10.1016/j.physleta.2008.01.057Suche in Google Scholar

[19] M. Wang, X. Li, and J. Zhang, The (G'/G) expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A. 372 (2008), 417–423.10.1016/j.physleta.2007.07.051Suche in Google Scholar

[20] E. M. E. Zayed and K. A. Gepreel, The (G'/G) expansion method for finding traveling wave solutions of nonlinear PDEs in mathematical physics, J. Math. Phys. 50 (2009), 13502–13513.10.1063/1.3033750Suche in Google Scholar

[21] E. M. E. Zayed, The (G'/G) expansion method and its applications to some nonlinear evolution equations in the mathematical physics, J. Appl. Math. Comput. 31 (2009), 89–103.10.1007/s12190-008-0159-8Suche in Google Scholar

[22] S. Zhang, J. Tong, and W. Wang, A generalized (G'/G) expansion method for the mKdV equation with variable coefficients, Phys. Lett. A 372 (2008), 2254–2257.10.1016/j.physleta.2007.11.026Suche in Google Scholar

[23] J. Zhang, X. Wei, and Y. Lu, A generalized (G'/G) expansion method and its applications, Phys. Lett. A 372 (2008), 3653–3658.10.1016/j.physleta.2008.02.027Suche in Google Scholar

[24] Y. M. Chen, S. H. Ma, and Z. Y. Ma, New exact solutions of a (3+1)-dimensional Jimbo-Miwa system, Chin. Phys. B 22 (2013), 050510.10.1088/1674-1056/22/5/050510Suche in Google Scholar

[25] C. L. Zheng, J. F. Zhang, and G. Solution, Fractal localized structures for the (2+1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system, Chin. Phys. Lett. 19 (2002), 1399–1402.10.1088/0256-307X/19/10/301Suche in Google Scholar

[26] J. F. Zhang and X. J. Lai, New variable separated solutions and ghoston structure for the (2+1)-dimensional sine-Gordon system, Chin. Phys. Lett. 21 (2004), 1449–1452.10.1088/0256-307X/21/8/010Suche in Google Scholar

[27] J. F. Zhang, C. L. Zheng, J. P. Meng, and J. P. Fang, Chaotic dynamical behaviour in soliton solutions for a new (2+1)-dimensional long dispersive wave system, Chin. Phys. Lett. 20 (2003), 448–451.10.1088/0256-307X/20/4/302Suche in Google Scholar

[28] C. L. Zheng, J. F. Zhang, W. H. Huang, and L. Q. Chen, Peakon and Foldon excitations in a (2+1)-dimensional breaking soliton system, Chin. Phys. Lett. 20 (2003), 783–786.10.1088/0256-307X/20/6/301Suche in Google Scholar

[29] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981.10.1137/1.9781611970883Suche in Google Scholar

Received: 2016-8-22
Accepted: 2016-6-6
Published Online: 2016-7-19
Published in Print: 2016-8-1

©2016 by De Gruyter

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2015-0122/html?lang=de
Button zum nach oben scrollen