Abstract
In modern warfare earth penetrating weapons are often used to defeat enemy’s hardened and deeply buried targets such as aircraft shelters and bunkers. A dual warhead system (DWS) is one of such weapons composed of a forward shaped charge (FSC) and a following through warhead (FTW). In this paper, an analytical model is first proposed to analyze the penetration of an FTW into concrete targets with pre-drilled holes and a DWS is then optimized in order to achieve its best penetration performance. The effects of various parameters on the performance of a dual warhead system penetrating a concrete target are delineated. It transpires that the present model predictions are in good agreement with available experimental data and that the results obtained may be useful for designing such weapon systems.
©2012 by De Gruyter
Articles in the same Issue
- Preface
- Multi-Thickness Target Plate Impact Experimental Approach to Failure Waves in Soda-lime Glass and Its Numerical Simulation
- Orientation-dependent Constitutive Model with Nonlinear Elasticity for Shocked β-HMX Single Crystal
- Numerical Simulation of a Shock Tube for Bio-dynamics Study
- Explosive-driven Shock Wave Demagnetization of Nd2Fe14B Hard Ferromagnets
- Large Mass Protection with Close-celled Metallic Foams Under Low Velocity Impact: Spring-damper-foam Collision Model
- Performance Analysis and Optimization of a Dual Warhead System
- Establishment of a Dynamic Mohr–Coulomb Failure Criterion for Rocks
- Nonlinear Damage and Failure Behavior of Brittle Rock Subjected to Impact Loading
- Experiments and Modeling of Failure and Fragmentation of Alumina Cylinders under Uniaxial Compression
- Radiation Characteristics of a Reflector Antenna Under Shock Wave Loading
- Experimental and Numerical Study on the Dynamic Buckling of Ping-pong Balls under Impact Loading
- Dynamic Buckling of Cylindrical Shells under Axial Impact in Hamiltonian System
- A Microscopic Approach to Strain-rate Effect on the Compressive Strength of Concrete-like Materials
- Frontmatter
- Preface
- Multi-Thickness Target Plate Impact Experimental Approach to Failure Waves in Soda-lime Glass and Its Numerical Simulation
- Orientation-dependent Constitutive Model with Nonlinear Elasticity for Shocked β-HMX Single Crystal
- Numerical Simulation of a Shock Tube for Bio-dynamics Study
- Explosive-driven Shock Wave Demagnetization of Nd2Fe14B Hard Ferromagnets
- Large Mass Protection with Close-celled Metallic Foams Under Low Velocity Impact: Spring-damper-foam Collision Model
- Performance Analysis and Optimization of a Dual Warhead System
- Establishment of a Dynamic Mohr–Coulomb Failure Criterion for Rocks
- Nonlinear Damage and Failure Behavior of Brittle Rock Subjected to Impact Loading
- Experiments and Modeling of Failure and Fragmentation of Alumina Cylinders under Uniaxial Compression
- Radiation Characteristics of a Reflector Antenna Under Shock Wave Loading
- Experimental and Numerical Study on the Dynamic Buckling of Ping-pong Balls under Impact Loading
- Dynamic Buckling of Cylindrical Shells under Axial Impact in Hamiltonian System
- A Microscopic Approach to Strain-rate Effect on the Compressive Strength of Concrete-like Materials
Articles in the same Issue
- Preface
- Multi-Thickness Target Plate Impact Experimental Approach to Failure Waves in Soda-lime Glass and Its Numerical Simulation
- Orientation-dependent Constitutive Model with Nonlinear Elasticity for Shocked β-HMX Single Crystal
- Numerical Simulation of a Shock Tube for Bio-dynamics Study
- Explosive-driven Shock Wave Demagnetization of Nd2Fe14B Hard Ferromagnets
- Large Mass Protection with Close-celled Metallic Foams Under Low Velocity Impact: Spring-damper-foam Collision Model
- Performance Analysis and Optimization of a Dual Warhead System
- Establishment of a Dynamic Mohr–Coulomb Failure Criterion for Rocks
- Nonlinear Damage and Failure Behavior of Brittle Rock Subjected to Impact Loading
- Experiments and Modeling of Failure and Fragmentation of Alumina Cylinders under Uniaxial Compression
- Radiation Characteristics of a Reflector Antenna Under Shock Wave Loading
- Experimental and Numerical Study on the Dynamic Buckling of Ping-pong Balls under Impact Loading
- Dynamic Buckling of Cylindrical Shells under Axial Impact in Hamiltonian System
- A Microscopic Approach to Strain-rate Effect on the Compressive Strength of Concrete-like Materials
- Frontmatter
- Preface
- Multi-Thickness Target Plate Impact Experimental Approach to Failure Waves in Soda-lime Glass and Its Numerical Simulation
- Orientation-dependent Constitutive Model with Nonlinear Elasticity for Shocked β-HMX Single Crystal
- Numerical Simulation of a Shock Tube for Bio-dynamics Study
- Explosive-driven Shock Wave Demagnetization of Nd2Fe14B Hard Ferromagnets
- Large Mass Protection with Close-celled Metallic Foams Under Low Velocity Impact: Spring-damper-foam Collision Model
- Performance Analysis and Optimization of a Dual Warhead System
- Establishment of a Dynamic Mohr–Coulomb Failure Criterion for Rocks
- Nonlinear Damage and Failure Behavior of Brittle Rock Subjected to Impact Loading
- Experiments and Modeling of Failure and Fragmentation of Alumina Cylinders under Uniaxial Compression
- Radiation Characteristics of a Reflector Antenna Under Shock Wave Loading
- Experimental and Numerical Study on the Dynamic Buckling of Ping-pong Balls under Impact Loading
- Dynamic Buckling of Cylindrical Shells under Axial Impact in Hamiltonian System
- A Microscopic Approach to Strain-rate Effect on the Compressive Strength of Concrete-like Materials