Home Technology Evaluating Pb(II) adsorption capacity of aluminum terephthalate metal−organic framework
Article
Licensed
Unlicensed Requires Authentication

Evaluating Pb(II) adsorption capacity of aluminum terephthalate metal−organic framework

  • Pham Dinh Du ORCID logo EMAIL logo
Published/Copyright: November 21, 2025

Abstract

Aluminum terephthalate metal−organic framework (MIL-53(Al)) was synthesized via the hydrothermal method. The influence of the molar ratio between AlCl3 and terephthalic acid (TA), reaction temperature, and material-treated temperature was investigated. The resulting MIL-53(Al) synthesized with the AlCl3/TA molar ratio of 1:0.5 and the reaction temperature ranging from 120 to 200 °C exhibits high crystallinity. The thermal treatment of as-synthesized MIL-53(Al) at 450 °C for 8 h unblocked the pores via the decomposition of unreacted TA molecules and enlarged the surface area of the material (from 11.4 m2 g−1 to 121.9 m2 g−1), while increasing Pb(II) removal efficiency. The Pb(II) adsorption on calcined MIL-53(Al) occurs favourably at low temperatures (<40 °C) and is exothermic. The adsorption is favourable according to the Langmuir isotherm, while moderately difficult according to the Freundlich isotherm. The adsorption capacity for Pb(II) calculated from the Langmuir model is 28.09 mg g−1. The Pb(II) adsorption efficiency of the material increases significantly when pH increases from 2 to 6. The mechanism of the adsorption process is also discussed.


Corresponding author: Pham Dinh Du, Thu Dau Mot University, 06 Tran Van On, Phu Loi Ward, Ho Chi Minh City, Vietnam, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: This research is funded by Thu Dau Mot University, Binh Duong Province, Vietnam under grant number DT.25.1-091.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Li, H.; Wu, S.; Du, C.; Zhong, Y.; Yang, C. Performances, and Mechanisms of Microbial Flocculants for Wastewater Treatment. Int. J. Environ. Res. Publ. Health 2020, 17, 1360. https://doi.org/10.3390/ijerph17041360.Search in Google Scholar PubMed PubMed Central

2. Zhang, Y.; Duan, X. Chemical Precipitation of Heavy Metals from Wastewater by Using the Synthetical Magnesium Hydroxyl Carbonate. Water Sci. Technol. 2020, 81, 1130–1136. https://doi.org/10.2166/wst.2020.208.Search in Google Scholar PubMed

3. Khulbe, K. C.; Matsuura, T. Removal of Heavy Metals and Pollutants by Membrane Adsorption Techniques. Appl. Water Sci. 2018, 8 (19). https://doi.org/10.1007/s13201-018-0661-6.Search in Google Scholar

4. Zewail, T. M.; Yousef, N. S. Kinetic Study of Heavy Metal Ions Removal by Ion Exchange in Batch Conical Air Spouted Bed. Alexandria Eng. J. 2015, 54, 83–90. https://doi.org/10.1016/j.aej.2014.11.008.Search in Google Scholar

5. Kumar, P. S.; Kirthika, K.; Kumar, K. S. Removal of Hexavalent Chromium Ions from Aqueous Solution by an Anion-Exchange Resin. Adsorpt. Sci. Technol. 2008, 26, 693–703. https://doi.org/10.1260/026361708788251402.Search in Google Scholar

6. Al-Degs, Y.; Khrasisheh, M. A. M.; Tutunji, M. F. Sorption of Lead Ions on Diatomite and Manganese Oxides Modified Diatomite. Water Res. 2001, 35, 3724–3728. https://doi.org/10.1016/S0043-1354(01)00071-9.Search in Google Scholar

7. Khraished, M. A. M.; Al-degs, Y. S.; Mcminn, W. A. M. Remediation of Wastewater Containing Heavy Metals Using Raw and Modified Diatomite. Chem. Eng. J. 2004, 99, 177–184. https://doi.org/10.1016/j.cej.2003.11.029.Search in Google Scholar

8. Caliskan, N.; Kul, A. R.; Alkan, S.; Sogut, E. G.; Alacabey, I. Adsorption of Zinc(II) on Diatomite and Manganese-Oxide-Modified Diatomite: A Kinetic and Equilibrium Study. J. Hazard. Mater. 2011, 193, 27–36. https://doi.org/10.1016/j.jhazmat.2011.06.058.Search in Google Scholar PubMed

9. Vu, T. A.; Le, G. H.; Dao, C. D.; Dang, L. Q.; Nguyen, K. T.; Nguyen, Q. K.; Dang, P. T.; Tran, H. T. K.; Duong, Q. T.; Nguyen, T. V.; Lee, G. D. Arsenic Removal from Aqueous Solutions by Adsorption Using Novel MIL-53(Fe) as a Highly Efficient Adsorbent. RSC Adv. 2015, 5, 5261–5268. https://doi.org/10.1039/C4RA12326C.Search in Google Scholar

10. Malhis, A. A.; Arar, S. H.; Fayyad, M. K.; Hodali, H. A. Amino- and Thiol-Modified Microporous Silicalite-1 and Mesoporous MCM-48 Materials as Potential Effective Adsorbents for Pb(II) in Polluted Aquatic Systems. Adsorpt. Sci. Technol. 2018, 36, 270–286. https://doi.org/10.1177/0263617416689270.Search in Google Scholar

11. Linh, N. L. M.; Van, D. H.; Duong, T.; Tinh, M. X.; Khieu, D. Q. Adsorption of Arsenate from Aqueous Solution onto Modified Vietnamese Bentonite. Adv. Mater. Sci. Eng. 2019, 13 p. https://doi.org/10.1155/2019/2710926.Search in Google Scholar

12. Deliyanni, E. A.; Kyzas, G. Z.; Triantafyllidis, K. S.; Matis, K. A. Activated Carbons for the Removal of Heavy Metal Ions: A Systematic Review of Recent Literature Focused on Lead and Arsenic Ions. Open Chem. 2015, 13, 699–708. https://doi.org/10.1515/chem-2015-0087.Search in Google Scholar

13. Singh, K.; Waziri, S. A. Activated Carbons Precursor to Corncob and Coconut Shell in the Remediation of Heavy Metals from Oil Refinery Wastewater. J. Mater. Environ. Sci. 2019, 10, 657–667. https://www.jmaterenvironsci.com/.Search in Google Scholar

14. Patel, H. Batch and Continuous Fixed Bed Adsorption of Heavy Metals Removal Using Activated Charcoal from Neem (Azadirachta indica) Leaf Powder. Sci. Rep. 2020, 10, 16895. https://doi.org/10.1038/s41598-020-72583-6.Search in Google Scholar PubMed PubMed Central

15. Jellali, S.; Azzaz, A. A.; Jeguirim, M.; Hamdi, H.; Mlayah, A. Use of Lignite as a Low-Cost Material for Cadmium and Copper Removal from Aqueous Solutions: Assessment of Adsorption Characteristics and Exploration of Involved Mechanisms. Water 2021, 13, 164. https://doi.org/10.3390/w13020164.Search in Google Scholar

16. Al-Ghouti, M. A.; Al-Degs, Y. S.; Khraisheh, M. A. M.; Ahmad, M. N.; Allen, S. J. Mechanisms and Chemistry of Dye Adsorption on Manganese Oxides-Modified Diatomite. J. Environ. Manage. 2009, 90, 3520–3527. https://doi.org/10.1016/j.jenvman.2009.06.004.Search in Google Scholar PubMed

17. Isawi, H. Using Zeolite/Polyvinyl Alcohol/Sodium Alginate Nanocomposite Beads for Removal of Some Heavy Metals from Wastewater. Arab. J. Chem. 2020, 13, 5691–5716. https://doi.org/10.1016/j.arabjc.2020.04.009.Search in Google Scholar

18. Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science 2005, 309, 1350–1354. https://doi.org/10.1126/science.1113247.Search in Google Scholar PubMed

19. Férey, G. Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev. 2008, 37, 191–214. https://doi.org/10.1039/B618320B.Search in Google Scholar PubMed

20. Haruna, A.; Zango, Z. U.; Tanimu, G.; Izuagie, T.; Musa, S. G.; Garba, Z. N.; Merican, Z. M. A. A Critical Review on Recent Trends in Metal-Organic Framework-Based Composites as Sustainable Catalysts for Environmental Applications. J. Environ. Chem. Eng. 2024, 12, 113542. https://doi.org/10.1016/j.jece.2024.113542.Search in Google Scholar

21. Naeimi, S.; Faghihian, H. Application of Novel Metal Organic Framework, MIL-53(Fe) and Its Magnetic Hybrid: For Removal of Pharmaceutical Pollutant, Doxycycline from Aqueous Solutions. Environ. Toxicol. Pharmacol. 2017, 53, 121–132. https://doi.org/10.1016/j.etap.2017.05.007.Search in Google Scholar PubMed

22. Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenèche, J.-M.; Ouay, B. L.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi, M.; Férey, G. Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host-Guest Interactions. J. Am. Chem. Soc. 2010, 132, 1127–1136. https://doi.org/10.1021/ja9092715.Search in Google Scholar PubMed

23. Gordon, J.; Kazemian, H.; Rohani, S. Rapid and Efficient Crystallization of MIL-53(Fe) by Ultrasound and Microwave Irradiation. Microporous Mesoporous Mater. 2012, 162, 36–43. https://doi.org/10.1016/j.micromeso.2012.06.009.Search in Google Scholar

24. Chen, L.; Mowat, J. P. S.; Jimenez, D. F.; Morrison, C. A.; Thompson, S. P.; Wright, P. A.; Düren, T. Elucidating the Breathing of the Metal-Organic Framework MIL-53(Sc) with Ab Initio Molecular Dynamics Simulations and in Situ X-ray Powder Diffraction Experiments. J. Am. Chem. Soc. 2013, 135, 15763–15773. https://doi.org/10.1021/ja403453g.Search in Google Scholar PubMed

25. Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F.; Férey, G. Hydrocarbon Adsorption in the Flexible Metal Organic Frameworks MIL-53(Al, Cr). J. Am. Chem. Soc. 2008, 130, 16926–16932. https://doi.org/10.1021/ja8039579.Search in Google Scholar PubMed

26. Finsy, V.; Ma, L.; Alaerts, L.; Vos, D. E. D.; Baron, G. V.; Denayer, J. F. M. Separation of CO2/CH4 Mixtures with the MIL-53(Al) Metal-Organic Framework. Microporous Mesoporous Mater. 2009, 120, 221–227. https://doi.org/10.1016/j.micromeso.2008.11.007.Search in Google Scholar

27. Rallapalli, P.; Patil, D.; Prasanth, K. P.; Somani, R. S.; Jasra, R. V.; Bajaj, H. C. An Alternative Activation Method for the Enhancement of Methane Storage Capacity of Nanoporous Aluminium Terephthalate, MIL-53(Al). J. Porous Mater. 2010, 17, 523–528. https://doi.org/10.1007/s10934-009-9320-5.Search in Google Scholar

28. Malsche, W. D.; Perrer, S. V. D.; Silverans, S.; Maes, M.; Vos, D. E. D.; Lynen, F.; Denayer, J. F. M. Unusual Pressure-Temperature Dependency in the Capillary Liquid Chromatographic Separation of C8 Alkylaromatics on the MIL-53(Al) Metal-Organic Framework. Microporous Mesoporous Mater. 2012, 162, 1–5. https://doi.org/10.1016/j.micromeso.2012.06.002.Search in Google Scholar

29. Patil, D. V.; Rallapalli, P. B. S.; Dangi, G. P.; Tayade, R. J.; Somani, R. S.; Bajaj, H. C. MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions. Ind. Eng. Chem. Res. 2011, 50, 10516–10524. https://doi.org/10.1021/ie200429f.Search in Google Scholar

30. Qian, X.; Yadian, B.; Wu, R.; Long, Y.; Zhou, K.; Zhu, B.; Huang, Y. Structure Stability of Metal-Organic Framework MIL-53 (Al) in Aqueous Solutions. Int. J. Hydrogen Energy 2013, 38, 16710–16715. https://doi.org/10.1016/j.ijhydene.2013.07.054.Search in Google Scholar

31. Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J. 2004, 10, 1373–1382. https://doi.org/10.1002/chem.200305413.Search in Google Scholar PubMed

32. Rahmani, E.; Rahmani, M. Al-based MIL-53 Metal Organic Framework (MOF) as the New Catalyst for Friedel-Crafts Alkylation of Benzene. Ind. Eng. Chem. Res. 2018, 57, 169–178. https://doi.org/10.1021/acs.iecr.7b04206.Search in Google Scholar

33. Luo, X.; Ding, L.; Luo, J. Adsorptive Removal of Pb(II) Ions from Aqueous Samples with Amino-functionalization of Metal–Organic Frameworks MIL-101(Cr). J. Chem. Eng. Data 2015, 60, 1732–1743. https://doi.org/10.1021/je501115m.Search in Google Scholar

34. Essalmi, S.; Lotfi, S.; BaQais, A.; Saadi, M.; Arab, M.; Ait Ahsaine, H. Design and Application of Metal Organic Frameworks for Heavy Metals Adsorption in Water: A Review. RSC Adv. 2024, 14, 9365–9390. https://doi.org/10.1039/D3RA08815D.Search in Google Scholar

35. Zhang, B. L.; Qiu, W.; Wang, P. P.; Liu, Y. L.; Zou, J.; Wang, L.; Ma, J. Mechanism Study about the Adsorption of Pb(II) and Cd(II) with Iron-Trimesic Metal–Organic Frameworks. Chem. Eng. J. 2020, 385, 123507. https://doi.org/10.1016/j.cej.2019.123507.Search in Google Scholar

36. Jamali, A.; Tehrani, A. A.; Shemirani, F.; Morsali, A. Lanthanide Metal–Organic Frameworks as Selective Microporous Materials for Adsorption of Heavy Metal Ions. Dalt. Trans. 2016, 45, 9193–9200. https://doi.org/10.1039/C6DT00782A.Search in Google Scholar PubMed

37. Chowdhury, T.; Zhang, L.; Zhang, J.; Aggarwal, S. Pb(II) Adsorption from Aqueous Solution by an Aluminum-Based Metal Organic Framework–Graphene Oxide Nanocomposite. Mater. Adv. 2021, 2, 3051–3059. https://doi.org/10.1039/D1MA00046B.Search in Google Scholar

38. Mahmood, T.; Saddique, M. T.; Naeem, A.; Westerhoff, P.; Mustafa, S.; Alum, A. Comparison of Different Methods for the Point of Zero Charge Determination of NiO. Ind. Eng. Chem. Res. 2011, 50, 10017–10023. https://doi.org/10.1021/ie200271d.Search in Google Scholar

39. Du, J. J.; Yuan, Y. P.; Sun, J. X.; Peng, F. M.; Jiang, X.; Qiu, L. G.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. New Photocatalysts Based on MIL-53 Metal-Organic Frameworks for the Decolorization of Methylene Blue Dye. J. Hazard. Mater. 2011, 190, 945–951. https://doi.org/10.1016/j.jhazmat.2011.04.029.Search in Google Scholar PubMed

40. Moran, C. M.; Joshi, J. N.; Marti, R. M.; Hayes, S. E.; Walton, K. S. Structured Growth of Metal-Organic Framework MIL-53(Al) from Solid Alumium Carbide Precursor. J. Am. Chem. Soc. 2018, 140, 9148–9153. https://doi.org/10.1021/jacs.8b04369.Search in Google Scholar PubMed

41. Liu, J. F.; Mu, J. C.; Qin, R. X.; Ji, S. F. Pd Nanoparticles Immobilized on MIL-53(Al) as Highly Effective Bifunctional Catalysts for Oxidation of Liquid Methanol to Methyl Formate. Pet. Sci. 2019, 16, 901–911. https://doi.org/10.1007/s12182-019-0334-6.Search in Google Scholar

42. Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. MIL-53(Fe) as a Highly Efficient Bifunctional Photocatalyst for the Simultaneous Reduction of Cr(VI) and Oxidation of Dyes. J. Hazard. Mater. 2015, 287, 364–372. https://doi.org/10.1016/j.jhazmat.2015.01.048.Search in Google Scholar PubMed

43. Wang, Y.; Kretschmer, K.; Zhang, J.; Mondal, A. K.; Guo, X.; Wang, G. Organic Sodium Terephthalate@Graphene Hybrid Anode Materials for Sodium-Ion Batteries. RSC Adv. 2016, 6, 57098–57102. https://doi.org/10.1039/C6RA11809G.Search in Google Scholar

44. Isaeva, V. I.; Vedenyapina, M. D.; Kulaishin, S. A.; Lobova, A. A.; Chernyshev, V. V.; Kapustin, G. I.; Tkachenko, O. P.; Vergun, V. V.; Arkhipov, D. A.; Nissenbaum, V. D.; Kustuv, L. M. Adsorption of 2,4-Dichlorophenoxyacetic Acid in an Aqueous Medium on Nanoscale MIL-53(Al) Type Materials. Dalt. Trans. 2019, 48, 15091–15104. https://doi.org/10.1039/C9DT03037A.Search in Google Scholar

45. Ho, Y. S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124. https://doi.org/10.1016/S0923-0467(98)00076-1.Search in Google Scholar

46. Wang, L.; Zhao, X.; Zhang, J.; Xiong, Z. Selective Adsorption of Pb(II) over the Zinc-Based MOFs in Aqueous Solution-Kinetics, Isotherms, and the Ion Exchange Mechanism. Environ. Sci. Pollut. Res. 2017, 24, 14198–14206. https://doi.org/10.1007/s11356-017-9002-9.Search in Google Scholar PubMed

47. Kamari, A.; Ngah, W. S. W. Isotherm, Kinetic and Thermodynamic Studies of Lead and Copper Uptake by H2SO4 Modified Chitosan. Colloids Surf. B Biointerfaces 2009, 73, 257–266. https://doi.org/10.1016/j.colsurfb.2009.05.024.Search in Google Scholar PubMed

48. Zhang, S.; Cui, M.; Zhang, Y.; Yu, Z.; Meng, C. Synthesis of Zeolite Y from Diatomite and Its Modification by Dimethylglyoxime for the Removal of Ni(II) from Aqueous Solution. J. Sol-Gel Sci. Technol. 2016, 80, 215–225. https://doi.org/10.1007/s10971-016-4080-6.Search in Google Scholar

49. Liu, P.; Chen, T.; Zheng, J. G. Removal of Iodate from Aqueous Solution Using Diatomite/Nano Titanium Dioxide Composite as Adsorbent. J. Radioanal. Nucl. Chem. 2020, 324, 1179–1188. https://doi.org/10.1007/s10967-020-07161-1.Search in Google Scholar

50. Ebrahimi, P.; Kumar, A. Diatomite Chemical Activation for Effective Adsorption of Methylene Blue Dye from Model Textile Wastewater. Int. J. Environ. Sci. Dev. 2021, 12, 23–28. https://doi.org/10.18178/ijesd.2021.12.1.1313.Search in Google Scholar

51. Paredes-Quevedo, L. C.; González-Caicedo, C.; Torres-Luna, J. A.; Carriazo, J. G. Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water Air Soil Pollut. 2021, 232 (4), 1–9. https://doi.org/10.1007/s11270-020-04968-2.Search in Google Scholar

52. Fan, H.; Ma, Y.; Wan, J.; Wang, Y. Removal of Gentian Violet and Rhodamine B Using Banyan Aerial Roots after Modification and Mechanism Studies of Differential Adsorption Behaviors. Environ. Sci. Pollut. Res. 2020, 27, 9152–9166. https://doi.org/10.1007/s11356-019-07024-7.Search in Google Scholar PubMed

53. Silva, F. C. M.; Silva, L. K. R.; Santos, A. G. D.; Caldeira, V. P. S.; Cruz-Filho, J. F.; Cavalcante, L. S.; Longo, E.; Luz, Jr., G. E. Structural Refinement, Morphological Features, Optical Properties, and Adsorption Capacity of α-Ag2WO4 Nanocrystals/SBA-15 Mesoporous on Rhodamine B Dye. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3626–3645. https://doi.org/10.1007/s10904-020-01560-3.Search in Google Scholar

54. Yu, Z. H.; Zhai, S. R.; Guo, H.; Iv, T. M.; Song, Y.; Zhang, F.; Ma, H. C. Removal of Methylene Blue over Low-Cost Mesoporous Silica Nanoparticles Prepared with Naturally Occurring Diatomite. J. Sol-Gel Sci. Technol. 2018, 88, 541–550. https://doi.org/10.1007/s10971-018-4859-8.Search in Google Scholar

55. Souza, F. H. M.; Leme, V. F. C.; Costa, G. O. B.; Castro, K. C.; Giraldi, T. R.; Andrade, G. S. S. Biosorption of Rhodamine B Using a Low-Cost Biosorbent Prepared from Inactivated Aspergillus oryzae Cells: Kinetic, Equilibrium and Thermodynamic Studies. Water Air Soil Pollut. 2020, 231, 242. https://doi.org/10.1007/s11270-020-04633-8.Search in Google Scholar

56. Aziz, B. K.; Shwan, D. M. S.; Kaufhold, S. Coparative Study on the Adsorption Efficiency of Two Different Local Clays for the Cationic Dye; Application for Adsorption of Methylene Blue from Medical Laboratories Wastewater. Silicon 2022, 14, 893–920. https://doi.org/10.1007/s12633-020-00833-3.Search in Google Scholar

57. Hamdaoui, O.; Naffrechoux, E. Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon; Part I. Two-Parameter Models and Equations Allowing Determination of Thermodynamic Parameters. J. Hazard. Mater. 2007, 147, 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021.Search in Google Scholar PubMed

Received: 2024-08-21
Accepted: 2025-08-05
Published Online: 2025-11-21
Published in Print: 2025-12-17

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0232/pdf?licenseType=restricted
Scroll to top button