Startseite Durian seed-derived gold nanoparticles: sustainable anticancer and catalytic applications from agricultural waste
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Durian seed-derived gold nanoparticles: sustainable anticancer and catalytic applications from agricultural waste

  • Mohammed Ali Dheyab ORCID logo EMAIL logo , Norfarahanis Jamaludin , Azlan Abdul Aziz ORCID logo EMAIL logo , Shaymaa Hussein Nowfal , Wesam Abdullah , Wasan Hussein Kasasbeh , Al Issa Jehad MohdFathi Mohammad , Mahmood S. Jameel und Farhank Saber Braim
Veröffentlicht/Copyright: 14. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Agricultural waste contributes to escalating environmental pressures but also represents a valuable, renewable source for sustainable nanomaterial production. In this study, durian seed extract (DurSE), obtained from the often-discarded seeds of Durio zibethinus, was utilized as a natural reducing and capping agent for the green synthesis of multifunctional gold nanoparticles (AuNPs). The biosynthesis process was systematically optimized by varying key parameters, with the most favorable conditions identified as 4 °C reaction temperature, 3 mL extract volume, and 1 mM HAuCl4·3H2O concentration. Structural and physicochemical characterizations of the resulting DurSE–AuNPs were performed using Ultraviolet–Visible spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffraction, confirming particle stability, functional group involvement, and crystalline nature. Biocompatibility and therapeutic potential were assessed in-vitro against MCF-7 human breast cancer cells, where the nanoparticles significantly reduced cell viability to 31 % at a concentration of 32 μg mL−1. Furthermore, the DurSE–AuNPs demonstrated excellent catalytic activity, achieving complete reduction of Methylene Blue and Methyl Orange dyes within 3 min and 15 min, respectively. These results highlight the dual biomedical and environmental potential of agricultural waste-derived nanomaterials, offering a sustainable route for producing high-value, multifunctional nanoparticles.


Corresponding author: Mohammed Ali Dheyab and Azlan Abdul Aziz, School of Physics, Universiti Sains Malaysia, George Town, 11800 Pulau Pinang, Malaysia; and Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, George Town, 11800 Pulau Pinang, Malaysia E-mail: (M. Ali Dheyab), (A.A. Aziz).

Acknowledgments

The authors would like to express their sincere appreciation to Universiti Sains Malaysia (USM), Penang, for the support provided, and to the staff of the Medical Physics and Biophysics Laboratory for their valuable assistance.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, M.A.D. and A.A.A.; methodology, M.A.D.; software, M.A.D., N.J., W.A., and M.S.J.; validation, M.A.D., F.S.B., and A.A.A.; formal analysis, M.A.D., N.J., F.S.B., M.S.J., W.H.K., A.I.J.M., and S.H.N.; investigation, M.A.D.; resources, M.A.D., W.A., W.H.K., and A.I.J.M.; data curation, M.A.D. and S.H.N.; writing – original draft preparation, M.A.D., N.J.; writing – review and editing, M.A.D., N.J., and A.A.A.; visualization, M.A.D.; supervision, M.A.D. and A.A.A.; project administration, M.A.D.; funding acquisition, M.A.D. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: This work was supported by a Universiti Sains Malaysia Bridging Grant with Project No: R501-LR-RND003-0000002097-0000.

  7. Data availability: Not applicable.

References

1. Ali Dheyab, M.; Tang, J. H.; Abdul Aziz, A.; Hussein Nowfal, S.; Jameel, M. S.; Alrosan, M.; Oladzadabbasabadi, N.; Ghasemlou, M. Green Synthesis of Gold Nanoparticles and their Emerging Applications in Cancer Imaging and Therapy: A Review. Rev. Inorg. Chem. 2024 (0); https://doi.org/10.1515/revic-2024-0048.Suche in Google Scholar

2. Dheyab, M. A.; Aziz, A. A.; Rahman, A. A.; Ashour, N. I.; Musa, A. S.; Braim, F. S.; Jameel, M. S. Monte Carlo Simulation of Gold Nanoparticles for X-ray Enhancement Application. Biochimica et Biophysica Acta (BBA)-General Subjects 2023, 1867 (4), 130318; https://doi.org/10.1016/j.bbagen.2023.130318.Suche in Google Scholar PubMed

3. Dheyab, M.; Aziz, A.; Jameel, M.; Khaniabadi, P.; Mehrdel, B.; Khaniabadi, B. In gold-coated Iron Oxide Nanoparticles as a Potential Photothermal Therapy Agent to Enhance Eradication of Breast Cancer Cells. J. Phys.: Conf. Ser. 2020, 012003; https://doi.org/10.1088/1742-6596/1497/1/012003.Suche in Google Scholar

4. Dheyab, M. A.; Khaniabadi, P. M.; Aziz, A. A.; Jameel, M. S.; Mehrdel, B.; Oglat, A. A.; Khaleel, H. A. Focused Role of Nanoparticles against COVID-19: Diagnosis and Treatment. Photodiagnosis Photodyn. Ther. 2021, 34, 102287; https://doi.org/10.1016/j.pdpdt.2021.102287.Suche in Google Scholar PubMed PubMed Central

5. Jameel, M. S.; Aziz, A. A.; Dheyab, M. A.; Mehrdel, B. Rapid methanol-assisted Amalgamation of High Purity Platinum Nanoparticles Utilizing Sonochemical Strategy and Investigation on its Catalytic Activity. Surf. Interfaces 2020, 21, 100785; https://doi.org/10.1016/j.surfin.2020.100785.Suche in Google Scholar

6. Nowfal, S. H.; Rusho, M. A.; Kamolova, N.; Pérez-Larios, A.; Soto-Robles, C.; Muniyandy, E.; Smerat, A.; Áviles-García, O.; Arab, A. I. A.; Islam, S. Design and Decorated Gold Nanoparticles over the Arabic gum-chitosan Hydrogel Polymers as a Novel Catalyst for Sonogashira Coupling Reactions. J. Organomet. Chem. 2025, 1038, 123762; https://doi.org/10.1016/j.jorganchem.2025.123762.Suche in Google Scholar

7. Khaniabadi, P. M.; Ahmed, N. M.; Dheyab, M. A.; Aziz, A. A.; Almessiere, M. Structure, Morphology and Absorption Characteristics of Gold Nanoparticles Produced via PLAL Method: Role of Low Energy X-ray Dosage. Surf. Interfaces 2021, 24, 101139; https://doi.org/10.1016/j.surfin.2021.101139.Suche in Google Scholar

8. Dheyab, M. A.; Aziz, A. A.; Khaniabadi, P. M.; Jameel, M. S.; Ahmed, N. M.; Ali, A. T. Distinct Advantages of Using Sonochemical over Laser Ablation Methods for a rapid-high Quality Gold Nanoparticles Production. Mater. Res. Express 2021, 8 (1), 015009; https://doi.org/10.1088/2053-1591/abd5a4.Suche in Google Scholar

9. Jamkhande, P. G.; Ghule, N. W.; Bamer, A. H.; Kalaskar, M. G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174; https://doi.org/10.1016/j.jddst.2019.101174.Suche in Google Scholar

10. Pechyen, C.; Ponsanti, K.; Tangnorawich, B.; Ngernyuang, N. Waste Fruit peel–mediated Green Synthesis of Biocompatible Gold Nanoparticles. J. Mater. Res. Technol. 2021, 14, 2982–2991; https://doi.org/10.1016/j.jmrt.2021.08.111.Suche in Google Scholar

11. Jimenez, E.; Abderrafi, K.; Abargues, R.; Valdes, J. L.; Martinez-Pastor, J. P. Laser-Ablation-Induced Synthesis of SiO2-capped Noble Metal Nanoparticles in a Single Step. Langmuir 2010, 26 (10), 7458–7463; https://doi.org/10.1021/la904179x.Suche in Google Scholar PubMed

12. Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid Green Synthesis of Gold Nanoparticles Using Rosa hybrida Petal Extract at Room Temperature. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2011, 79 (5), 1461–1465; https://doi.org/10.1016/j.saa.2011.05.001.Suche in Google Scholar PubMed

13. Singh, P.; Kim, Y. J.; Yang, D. C. A Strategic Approach for Rapid Synthesis of Gold and Silver Nanoparticles by Panax ginseng Leaves. Artif. Cell Nanomed. Biotechnol. 2016, 44 (8), 1949–1957; https://doi.org/10.3109/21691401.2015.1115410.Suche in Google Scholar PubMed

14. Morales-Luckie, R. A.; Lopezfuentes-Ruiz, A. A.; Olea-Mejía, O. F.; Liliana, A.-F.; Sanchez-Mendieta, V.; Brostow, W.; Hinestroza, J. P. Synthesis of Silver Nanoparticles Using Aqueous Extracts of Heterotheca inuloides as Reducing Agent and Natural Fibers as Templates: Agave lechuguilla and Silk. Mater. Sci. Eng. C 2016, 69, 429–436; https://doi.org/10.1016/j.msec.2016.06.066.Suche in Google Scholar PubMed

15. Ahmed, S.; Ahmad, M.; Swami, B. L.; Ikram, S. Green Synthesis of Silver Nanoparticles Using Azadirachta indica Aqueous Leaf Extract. J. Radiat. Res. Appl. Sci. 2016, 9 (1), 1–7; https://doi.org/10.1016/j.jrras.2015.06.006.Suche in Google Scholar

16. Braim, F. S.; Ab Razak, N. N. A. N.; Aziz, A. A.; Dheyab, M. A.; Ismael, L. Q. Rapid green-assisted Synthesis and Functionalization of Superparamagnetic Magnetite Nanoparticles Using Sumac Extract and Assessment of their Cellular Toxicity, Uptake, and Anti-metastasis Property. Ceram. Int. 2023, 49 (5), 7359–7369; https://doi.org/10.1016/j.ceramint.2022.10.207.Suche in Google Scholar

17. Rafique, M.; Sadaf, I.; Rafique, M. S.; Tahir, M. B. A Review on Green Synthesis of Silver Nanoparticles and their Applications. Artif. Cell Nanomed. Biotechnol. 2017, 45 (7), 1272–1291; https://doi.org/10.1080/21691401.2016.1241792.Suche in Google Scholar PubMed

18. Zhang, S.; Tang, Y.; Vlahovic, B. A Review on Preparation and Applications of silver-containing Nanofibers. Nanoscale Res. Lett. 2016, 11, 1–8; https://doi.org/10.1186/s11671-016-1286-z.Suche in Google Scholar PubMed PubMed Central

19. Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34 (7), 588–599; https://doi.org/10.1016/j.tibtech.2016.02.006.Suche in Google Scholar PubMed

20. Singh, P.; Kim, Y. J.; Wang, C.; Mathiyalagan, R.; Yang, D. C. The Development of a Green Approach for the Biosynthesis of Silver and Gold Nanoparticles by Using Panax ginseng Root Extract, and their Biological Applications. Artif. Cell Nanomed. Biotechnol. 2016, 44 (4), 1150–1157; https://doi.org/10.3109/21691401.2015.1011809.Suche in Google Scholar PubMed

21. Bello, B. A.; Khan, S. A.; Khan, J. A.; Syed, F. Q.; Anwar, Y.; Khan, S. B. Antiproliferation and Antibacterial Effect of Biosynthesized AgNps from Leaves Extract of Guiera senegalensis and its Catalytic Reduction on some Persistent Organic Pollutants. J. Photochem. Photobiol. B Biol. 2017, 175, 99–108; https://doi.org/10.1016/j.jphotobiol.2017.07.031.Suche in Google Scholar PubMed

22. Arya, G.; Kumari, R. M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green Synthesis of Silver Nanoparticles Using Prosopis juliflora Bark Extract: Reaction Optimization, Antimicrobial and Catalytic Activities. Artif. Cell Nanomed. Biotechnol. 2018, 46 (5), 985–993; https://doi.org/10.1080/21691401.2017.1354302.Suche in Google Scholar PubMed

23. Dheyab, M. A.; Abdullah, W.; Aziz, A. A.; Alanezi, S. T.; Oladzadabbasabadi, N.; Khaniabadi, P. M.; Jameel, M. S.; Braim, F. S.; Al-Jawarneh, M. A.; Mohammad, A. I. J. M.; Rahman, A. A.; Mehrdel, B. Mechanistic Insights and Advances in polyphenol-and flavonoid-mediated Sustainable Synthesis of Gold Nanoparticles from Agricultural Waste: A Review. Int. J. Biol. Macromol. 2025, 145978; https://doi.org/10.1016/j.ijbiomac.2025.145978.Suche in Google Scholar PubMed

24. Mehrdel, B.; Yehya, A. H. S.; Dheyab, M. A.; Jameel, M. S.; Aziz, A. A.; Nikbakht, A.; Khaniabadi, P. M.; Alrosan, M.; Rabeea, M. A.; Kareem, A. A. The Antibacterial and Toxicological Studies of Mycosynthesis Silver Nanoparticles by Isolated Phenols from Agaricus bisporus. Phys. Scr. 2023, 98 (12), 125007; https://doi.org/10.1088/1402-4896/ad080f.Suche in Google Scholar

25. Dheyab, M. A.; Aziz, A. A.; Abdullah, W.; Alanezi, S. T.; Kasasbeh, W. H.; Fohely, F.; Khaniabadi, P. M.; Jameel, M. S.; Oladzadabbasabadi, N.; Ghasemlou, M. Engineering Colloidal Nanozymes for Cancer Diagnosis and Therapy: From Surface Chemistry to Catalytic Mechanisms and Precision Medicine. ACS Appl. Bio Mater. 2025, 8 (6); https://doi.org/10.1021/acsabm.5c00495.Suche in Google Scholar PubMed

26. Dheyab, M. A.; Aziz, A. A.; Nowfal, S. H.; Braim, F. S.; Abdullah, W.; Kasasbeh, W. H.; Jameel, M. S.; Alanezi, S. T.; Alrosan, M.; Oladzadabbasabadi, N. Sustainable Green Synthesis of Silver Nanoparticles for Safer Biomedical Application. J. Environ. Chem. Eng. 2025, 115998; https://doi.org/10.1016/j.jece.2025.115998.Suche in Google Scholar

27. Ajila, C.; Brar, S. K.; Verma, M.; Prasada Rao, U. Sustainable Solutions for Agro Processing Waste Management: An Overview. Environ. Protect. Strat. Sustain. Dev. 2012, 65–109; https://doi.org/10.1007/978-94-007-1591-2_3.Suche in Google Scholar

28. Tran, Q. H.; Le, A.-T. Silver Nanoparticles: Synthesis, Properties, Toxicology, Applications and Perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4 (3), 033001; https://doi.org/10.1088/2043-6262/4/3/033001.Suche in Google Scholar

29. Skіba, M.; Vorobyova, V. Green Synthesis of Silver Nanoparticles Using Grape Pomace Extract Prepared by plasma-chemical Assisted Extraction Method. Mol. Cryst. Liq. Cryst. 2018, 674 (1), 142–151; https://doi.org/10.1080/15421406.2019.1578520.Suche in Google Scholar

30. Pimentel-Moral, S.; de la Luz Cádiz-Gurrea, M.; Rodríguez-Pérez, C.; Segura-Carretero, A. Recent Advances in Extraction Technologies of Phytochemicals Applied for the Revaluation of agri-food by-products. Funct. Preserv. Prop. Phytochem. 2020, 209–239; https://doi.org/10.1016/b978-0-12-818593-3.00007-5.Suche in Google Scholar

31. Ravikumar, K.; Sudakaran, S. V.; Ravichandran, K.; Pulimi, M.; Natarajan, C.; Mukherjee, A. Green Synthesis of NiFe Nano Particles Using Punica granatum Peel Extract for Tetracycline Removal. J. Clean. Prod. 2019, 210, 767–776; https://doi.org/10.1016/j.jclepro.2018.11.108.Suche in Google Scholar

32. Abdel-Shafy, H. I.; Mansour, M. S., Green Synthesis of Metallic Nanoparticles from Natural Resources and Food Waste and their Environmental Application. Green Metal Nanoparticles: Synthesis, Characterization and their Applications 2018, 321–385, https://doi.org/10.1002/9781119418900.ch11.Suche in Google Scholar

33. Zafar, Z.; Ali, A. B. M.; Nazeer, M.; Ali, Z.; Hejazi, H. A.; Saadaoui, S.; Ghodhbani, R.; Khan, M. I. Tribological Analysis of Rabinowitsch Fluid in Peristaltic Flow with Gold Nanoparticle Suspension. Tribol. Int. 2025, 209, 110730; https://doi.org/10.1016/j.triboint.2025.110730.Suche in Google Scholar

34. Al-Mafarjy, S. S.; Suardi, N.; Ahmed, N. M.; Kernain, D.; Alkatib, H. H.; Dheyab, M. A. Green Synthesis of Gold Nanoparticles from Coleus scutellarioides (L.) Benth Leaves and Assessment of Anticancer and Antioxidant Properties. Inorg. Chem. Commun. 2024, 161, 112052; https://doi.org/10.1016/j.inoche.2024.112052.Suche in Google Scholar

35. Dheyab, M. A.; Aziz, A. A.; Al-Mafarjy, S. S.; Suardi, N.; Ab Razak, N. N. A. N.; Ramizy, A.; Jameel, M. S. Exploring the Anticancer Potential of Biogenic Inorganic Gold Nanoparticles Synthesized via mushroom-assisted Green Route. Inorg. Chem. Commun. 2023, 157, 111363; https://doi.org/10.1016/j.inoche.2023.111363.Suche in Google Scholar

36. Ali, A. B. M.; Abdulazez, A. A.; Berdimurodov, E.; Singh, N. S. S.; Rusho, M. A.; Smerat, A.; Diab, M. A.; El-Sabban, H. A.; Arabi, A. I. A.; Islam, S. Bio-Supported of Gold Nanoparticles over Magnetic Nanoparticles: Synthesis, Characterization and Evaluation its Catalytic Activity for one-pot Preparation of pyrano[2,3-d]pyrimidines. J. Organomet. Chem. 2025, 1038, 123759; https://doi.org/10.1016/j.jorganchem.2025.123759.Suche in Google Scholar

37. Ali, A. B. M.; Ahmed, T. A.; Saydaxmetova, S.; Mayani, S. V.; Ballal, S.; Gupta, H.; Ray, S.; Sinha, A.; Kamangar, S.; Islam, S. Design and Synthesis of Magnetic chitosan-supported Gold Nanoparticles and Evaluating its Usage in the Suzuki-Miyaura Coupling Reactions. J. Organomet. Chem. 2025, 1034, 123677; https://doi.org/10.1016/j.jorganchem.2025.123677.Suche in Google Scholar

38. Mehrdel, B.; Othman, N.; Aziz, A. A.; Khaniabadi, P. M.; Jameel, M. S.; Dheyab, M. A.; Amiri, I. Identifying Metal Nanoparticle Size Effect on Sensing Common Human Plasma Protein by Counting the Sensitivity of Optical Absorption Spectra Damping. Plasmonics 2020, 15 (1), 123–133; https://doi.org/10.1007/s11468-019-01007-7.Suche in Google Scholar

39. Rabeea, M. A.; Naeem, G. A.; Owaid, M. N.; Aziz, A. A.; Jameel, M. S.; Dheyab, M. A.; Muslim, R. F.; Jameel, L. F. Phytosynthesis of Prosopis farcta fruit-gold Nanoparticles Using Infrared and Thermal Devices and their Catalytic Efficacy. Inorg. Chem. Commun. 2021, 133, 108931; https://doi.org/10.1016/j.inoche.2021.108931.Suche in Google Scholar

40. Dheyab, M. A.; Aziz, A. A.; Nowfal, S. H.; Al-Mafarjy, S. S.; Abdullah, W.; Suardi, N.; Jameel, M. S.; Braim, F. S.; Alrosan, M.; Khaniabadi, P. M. Turning Food waste-derived Ultrasmall Gold Nanoparticles as a Photothermal Agent for Breast Cancer Cell Eradication. Inorg. Chem. Commun. 2024, 169, 113030; https://doi.org/10.1016/j.inoche.2024.113030.Suche in Google Scholar

41. Husin, N. A.; Rahman, S.; Karunakaran, R.; Bhore, S. J. A Review on the Nutritional, Medicinal, Molecular and Genome Attributes of Durian (Durio zibethinus L.), the King of Fruits in Malaysia. Bioinformation 2018, 14 (6), 265; https://doi.org/10.6026/97320630014265.Suche in Google Scholar PubMed PubMed Central

42. Ashraf, M. A.; Maah, M. J.; Yusoff, I. Estimation of Antioxidant Phytochemicals in Four Different Varieties of Durian (Durio zibethinus Murray) Fruit. Middle East J. Sci. Res. 2010, 6 (5), 465–471.Suche in Google Scholar

43. Leontowicz, M.; Leontowicz, H.; Drzewiecki, J.; Jastrzebski, Z.; Haruenkit, R.; Poovarodom, S.; Park, Y.-S.; Jung, S.-T.; Kang, S.-G.; Trakhtenberg, S.; Gorinstein, S. Two Exotic Fruits Positively Affect Rat’s Plasma Composition. Food Chem. 2007, 102 (1), 192–200; https://doi.org/10.1016/j.foodchem.2006.05.046.Suche in Google Scholar

44. Fang, X.; Li, Y.; Kua, Y. L.; Chew, Z. L.; Gan, S.; Tan, K. W.; Lee, T. Z. E.; Cheng, W. K.; Lau, H. L. N. Insights on the Potential of Natural Deep Eutectic Solvents (NADES) to fine-tune Durian Seed Gum for Use as Edible Food Coating. Food Hydrocolloids 2022, 132, 107861; https://doi.org/10.1016/j.foodhyd.2022.107861.Suche in Google Scholar

45. Vinay, S. P; Udayabhanu, N. G.; Hemasekhar, B.; Chandrappa, C.; Chandrasekhar, N. Biomedical Applications of Durio zibethinus Extract Mediated Gold Nanoparticles as Antimicrobial, Antioxidant and Anticoagulant Activity. Int. J. Biosens. Bioelectron. 2019, 5 (5); https://doi.org/10.15406/ijbsbe.2019.05.00169.Suche in Google Scholar

46. Duong, N. L.; Nguyen, V. M.; Tran, T. A. N.; Phan, T. D. T.; Tran, T. B. Y.; Do, B. L.; Phung Anh, N.; Nguyen, T. A. T.; Ho, T. G.-T.; Nguyen, T. Durian Shell-Mediated Simple Green Synthesis of Nanocopper Against Plant Pathogenic Fungi. ACS Omega 2023, 8 (12), 10968–10979; https://doi.org/10.1021/acsomega.2c07559.Suche in Google Scholar PubMed PubMed Central

47. Tripathi, R. M.; Yoon, S.-Y.; Ahn, D.; Chung, S. J. Facile Synthesis of Triangular and Hexagonal Anionic Gold Nanoparticles and Evaluation of their Cytotoxicity. Nanomaterials 2019, 9 (12), 1774; https://doi.org/10.3390/nano9121774.Suche in Google Scholar PubMed PubMed Central

48. Kumar, V.; Sharma, N.; Maitra, S. In Vitro and in Vivo Toxicity Assessment of Nanoparticles. Int. Nano Lett. 2017, 7 (4), 243–256; https://doi.org/10.1007/s40089-017-0221-3.Suche in Google Scholar

49. Li, S.; Al-Misned, F. A.; El-Serehy, H. A.; Yang, L. Green Synthesis of Gold Nanoparticles Using Aqueous Extract of Mentha longifolia Leaf and Investigation of its Anti-human Breast Carcinoma Properties in the in Vitro Condition. Arab. J. Chem. 2021, 14 (2), 102931; https://doi.org/10.1016/j.arabjc.2020.102931.Suche in Google Scholar

50. Geethalakshmi, R.; Sarada Sarada, Gold and Silver Nanoparticles from Trianthema Decandra: Synthesis, Characterization, and Antimicrobial Properties. Int. J. Nanomed. 2012, 5375; https://doi.org/10.2147/ijn.s36516.Suche in Google Scholar

51. Kumar, D.; Saini, N.; Jain, N.; Sareen, R.; Pandit, V. Gold Nanoparticles: An Era in Bionanotechnology. Expet Opin. Drug Deliv. 2013, 10 (3), 397–409; https://doi.org/10.1517/17425247.2013.749854.Suche in Google Scholar PubMed

52. Verma, H. N.; Singh, P.; Chavan, R. Gold Nanoparticle: Synthesis and Characterization. Vet. World 2014, 7 (2), 72; https://doi.org/10.14202/vetworld.2014.72-77.Suche in Google Scholar

53. Geraldes, A. N.; Da Silva, A. A.; Leal, J.; Estrada-Villegas, G. M.; Lincopan, N.; Katti, K. V.; Lug&Atildeo, A. B. Green Nanotechnology from Plant Extracts: Synthesis and Characterization of Gold Nanoparticles. Adv. Nanoparticles 2016, 05 (03), 176–185; https://doi.org/10.4236/anp.2016.53019.Suche in Google Scholar

54. Huang, X.; El-Sayed, M. A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1 (1), 13–28; https://doi.org/10.1016/j.jare.2010.02.002.Suche in Google Scholar

55. Islam, N. U.; Jalil, K.; Shahid, M.; Rauf, A.; Muhammad, N.; Khan, A.; Shah, M. R.; Khan, M. A. Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Salix Alba. Arab. J. Chem. 2019, 12 (8), 2914–2925; https://doi.org/10.1016/j.arabjc.2015.06.025.Suche in Google Scholar

56. Saravanan, A.; Kumar, P. S.; Karishma, S.; Vo, D.-V. N.; Jeevanantham, S.; Yaashikaa, P.; George, C. S. A Review on Biosynthesis of Metal Nanoparticles and its Environmental Applications. Chemosphere 2021, 264, 128580; https://doi.org/10.1016/j.chemosphere.2020.128580.Suche in Google Scholar PubMed

57. Sumitha, S.; Vasanthi, S.; Shalini, S.; Chinni, S. V.; Gopinath, S. C. B.; Anbu, P.; Bahari, M. B.; Harish, R.; Kathiresan, S.; Ravichandran, V. Phyto-Mediated Photo Catalysed Green Synthesis of Silver Nanoparticles Using Durio zibethinus Seed Extract: Antimicrobial and Cytotoxic Activity and Photocatalytic Applications. Molecules 2018, 23 (12), 3311; https://doi.org/10.3390/molecules23123311.Suche in Google Scholar PubMed PubMed Central

58. Phan, H. T.; Haes, A. J. What does Nanoparticle Stability Mean? J. Phys. Chem. C 2019, 123 (27), 16495–16507; https://doi.org/10.1021/acs.jpcc.9b00913.Suche in Google Scholar PubMed PubMed Central

59. Akintelu, S. A.; Yao, B.; Folorunso, A. S. Bioremediation and Pharmacological Applications of Gold Nanoparticles Synthesized from Plant Materials. Heliyon 2021, 7 (3), e06591; https://doi.org/10.1016/j.heliyon.2021.e06591.Suche in Google Scholar PubMed PubMed Central

60. Sumitha, S.; Vasanthi, S.; Shalini, S.; Chinni, S. V.; Gopinath, S. C.; Anbu, P.; Bahari, M. B.; Harish, R.; Kathiresan, S.; Ravichandran, V. Phyto-Mediated Photo Catalysed Green Synthesis of Silver Nanoparticles Using Durio zibethinus Seed Extract: Antimicrobial and Cytotoxic Activity and Photocatalytic Applications. Molecules 2018, 23 (12), 3311; https://doi.org/10.3390/molecules23123311.Suche in Google Scholar

61. Elia, P.; Zach, R.; Hazan, S.; Kolusheva, S.; Porat, Z. E.; Zeiri, Y. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Reducing Agents. Int. J. Nanomed. 2014, 4007–4021; https://doi.org/10.2147/ijn.s57343.Suche in Google Scholar

62. Elbagory, A.; Cupido, C.; Meyer, M.; Hussein, A. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles Using Microtitre-Plate Method. Molecules 2016, 21 (11), 1498; https://doi.org/10.3390/molecules21111498.Suche in Google Scholar PubMed PubMed Central

63. Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M. R. Synthesis, chemical–physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26 (19), 5823; https://doi.org/10.3390/molecules26195823.Suche in Google Scholar PubMed PubMed Central

64. Abd Mutalib, M.; Rahman, M.; Othman, M.; Ismail, A.; Jaafar, J. Scanning Electron Microscopy (SEM) and energy-dispersive X-ray (EDX) Spectroscopy. In Membrane characterization; Elsevier, 2017; pp. 161–179.10.1016/B978-0-444-63776-5.00009-7Suche in Google Scholar

65. Nayem, S. M. A.; Sultana, N.; Haque, M. A.; Miah, B.; Hasan, M. M.; Islam, T.; Hasan, M. M.; Awal, A.; Uddin, J.; Aziz, M. A.; Ahammad, A. J. S. Green Synthesis of Gold and Silver Nanoparticles by Using Amorphophallus paeoniifolius Tuber Extract and Evaluation of their Antibacterial Activity. Molecules 2020, 25 (20), 4773; https://doi.org/10.3390/molecules25204773.Suche in Google Scholar PubMed PubMed Central

66. Ali Dheyab, M.; Abdul Aziz, A.; Jameel, M. S.; Moradi Khaniabadi, P.; Oglat, A. A. Rapid Sonochemically-Assisted Synthesis of Highly Stable Gold Nanoparticles as Computed Tomography Contrast Agents. Appl. Sci. 2020, 10 (20), 7020; https://doi.org/10.3390/app10207020.Suche in Google Scholar

67. Rabeea, M. A.; Owaid, M. N.; Aziz, A. A.; Jameel, M. S.; Dheyab, M. A. Mycosynthesis of Gold Nanoparticles Using the Extract of Flammulina velutipes, Physalacriaceae, and their Efficacy for Decolorization of Methylene Blue. J. Environ. Chem. Eng. 2020, 8 (3), 103841; https://doi.org/10.1016/j.jece.2020.103841.Suche in Google Scholar

68. Hemmati, S.; Joshani, Z.; Zangeneh, A.; Zangeneh, M. M. Biosynthesis and Chemical Characterization of polydopamine-capped Silver Nanoparticles for the Treatment of Acute Myeloid Leukemia in Comparison to Doxorubicin in a Leukemic Mouse Model. Appl. Organomet. Chem. 2020, 34 (2), e5277; https://doi.org/10.1002/aoc.5277.Suche in Google Scholar

69. López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J. Funct. Biomater. 2014, 5 (2), 43–57; https://doi.org/10.3390/jfb5020043.Suche in Google Scholar PubMed PubMed Central

70. Suvith, V.; Philip, D. Catalytic Degradation of Methylene Blue Using Biosynthesized Gold and Silver Nanoparticles. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2014, 118, 526–532; https://doi.org/10.1016/j.saa.2013.09.016.Suche in Google Scholar PubMed

71. Rawat, S.; Misra, N.; Singh, M.; Ghosh, A.; Shelkar, S. A.; Tiwari, M.; Samanta, S.; Kumar, V. Plasma and Radiation Mediated Green Synthesis of Gold Nanoparticles-immobilized bio-template Based Catalytic Reactor ‘AuNICaR’: Mechanistic Insights, Catalytic Performance and Reusability Analysis. Chem. Eng. J. 2024, 155271; https://doi.org/10.1016/j.cej.2024.155271.Suche in Google Scholar

72. Narkhede, N.; Uttam, B.; Rao, C. P. Calixarene-Assisted Pd Nanoparticles in Organic Transformations: Synthesis, Characterization, and Catalytic Applications in Water for C–C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS omega 2019, 4 (3), 4908–4917; https://doi.org/10.1021/acsomega.9b00095.Suche in Google Scholar PubMed PubMed Central

73. Gong, N.; Chen, S.; Jin, S.; Zhang, J.; Wang, P. C.; Liang, X.-J. Effects of the Physicochemical Properties of Gold Nanostructures on Cellular Internalization. Regen. Biomater. 2015, 2 (4), 273–280; https://doi.org/10.1093/rb/rbv024.Suche in Google Scholar PubMed PubMed Central

74. Albanese, A.; Tang, P. S.; Chan, W. C. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14 (1), 1–16; https://doi.org/10.1146/annurev-bioeng-071811-150124.Suche in Google Scholar PubMed

75. Cui, W.; Li, J.; Zhang, Y.; Rong, H.; Lu, W.; Jiang, L. Effects of Aggregation and the Surface Properties of Gold Nanoparticles on Cytotoxicity and Cell Growth. Nanomed. Nanotechnol. Biol. Med. 2012, 8 (1), 46–53; https://doi.org/10.1016/j.nano.2011.05.005.Suche in Google Scholar PubMed

76. Parida, U. K.; Biswal, S. K.; Bindhani, B. K. Green Synthesis and Characterization of Gold Nanoparticles: Study of its Biological Mechanism in Human SUDHL-4 Cell Line. Adv. Biol. Chem. 2014, 4 (06), 360; https://doi.org/10.4236/abc.2014.46041.Suche in Google Scholar

77. Mishra, P.; Ray, S.; Sinha, S.; Das, B.; Khan, M. I.; Behera, S. K.; Yun, S.-I.; Tripathy, S. K.; Mishra, A. Facile bio-synthesis of Gold Nanoparticles by Using Extract of Hibiscus sabdariffa and Evaluation of its Cytotoxicity Against U87 Glioblastoma Cells Under Hyperglycemic Condition. Biochem. Eng. J. 2016, 105, 264–272; https://doi.org/10.1016/j.bej.2015.09.021.Suche in Google Scholar

78. Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A. An Evidence on G2/M Arrest, DNA Damage and Caspase Mediated Apoptotic Effect of Biosynthesized Gold Nanoparticles on Human Cervical Carcinoma Cells (HeLa). Mater. Res. Bull. 2014, 52, 15–24; https://doi.org/10.1016/j.materresbull.2013.12.060.Suche in Google Scholar

79. Nagaraja, K.; Arunpandian, M.; Hwan, O. T. Enhanced Photocatalytic Degradation of Organic Pollutants by green-synthesized Gold Nanoparticles Using Polysaccharide for Environmental Remediation. Int. J. Biol. Macromol. 2024, 269, 131866; https://doi.org/10.1016/j.ijbiomac.2024.131866.Suche in Google Scholar PubMed

80. Madiehe, A. M.; Moabelo, K. L.; Modise, K.; Sibuyi, N. R.; Meyer, S.; Dube, A.; Onani, M. O.; Meyer, M. Catalytic Reduction of 4-nitrophenol and Methylene Blue by Biogenic Gold Nanoparticles Synthesized Using Carpobrotus edulis Fruit (Sour Fig) Extract. Nanomater. Nanotechnol. 2022, 12. 18479804221108254; https://doi.org/10.1177/18479804221108254.Suche in Google Scholar

81. Kumar, I.; Mondal, M.; Meyappan, V.; Sakthivel, N. Green one-pot Synthesis of Gold Nanoparticles Using Sansevieria roxburghiana Leaf Extract for the Catalytic Degradation of Toxic Organic Pollutants. Mater. Res. Bull. 2019, 117, 18–27; https://doi.org/10.1016/j.materresbull.2019.04.029.Suche in Google Scholar

82. Soshnikova, V.; Kim, Y. J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; Yang, D. C. Cardamom Fruits as a Green Resource for Facile Synthesis of Gold and Silver Nanoparticles and their Biological Applications. Artif. Cell Nanomed. Biotechnol. 2018, 46 (1), 108–117; https://doi.org/10.1080/21691401.2017.1296849.Suche in Google Scholar PubMed

Received: 2024-12-01
Accepted: 2025-08-11
Published Online: 2025-11-14

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0326/html
Button zum nach oben scrollen