Abstract
The phase equilibria of the Ce–Co–Ti ternary system at 873 K and 1,073 K were determined for the first time by using the equilibrium alloy method in combination with scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction. The ternary intermetallic compound CeCo12-x Ti x with a ThMn12-type structure was detected to exist at 873 K and 1,073 K. The composition range of CeCo12-x Ti x was measured to 7.8–14.6 at.% Ti at 873 K and 8.4–14.8 at.% Ti at 1,073 K, respectively. Due to the partial substitution of Co by Ti, the metastable binary intermetallic compound CeCo7 with a TbCu7-type structure was confirmed to be stable at 873 K, and the solid solubility of Ti in CeCo7 was determined to be 3.3 at.%. The experimental results show that the maximum solid solubility of Ti in Ce2Co17(rt), CeCo5, Ce5Co19, Ce2Co7(ht), CeCo3, and CeCo2 at 873 K is 6.0 at.%, 1.4 at.%, 1.3 at.%, 4.1 at.%, 1.2 at.% and 2.2 at.%, respectively, while the composition ranges of Co3Ti, Co2Ti(c), and CoTi are 75.2–82.0 at.% Co, 66.0–67.5 at.% Co and 48.5–53.8 at.% Co. Meanwhile, the maximum solid solubility of Ti in Ce2Co17(rt), CeCo5, Ce5Co19, Ce2Co7(ht), CeCo3, and CeCo2 at 1,073 K was measured to be 5.3 at.%, 2.8 at.%, 0.5 at.%, 2.8 at.%, 0.9 at.%, and 2.5 at.%, respectively, while the composition ranges of Co3Ti, Co2Ti(c), and CoTi are 74–79.7 at.% Co, 65.6–68.5 at.% Co and 51.4–53.5 at.% Co. Finally, two isothermal sections of the Ce–Co–Ti ternary system at 873 K and 1,073 K were established.
-
Research ethics: Not applicable.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: This work was supported financially by Guangxi Natural Science Foundation (2020GXNSFFA297004), National Natural Science Foundation of China (51761008, 51971069), Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center of Structure and Property for New Energy Materials (231008-Z) and Engineering Research Center of Electronic Information Materials and Devices (EIMD-AA202004), Guilin University of Electronic Technology, China. The authors are thankful for the support from the foundation for Guangxi Bagui scholars.
-
Data availability: Not applicable.
References
1. Gabay, A.; Hadjipanayis, G. Recent Developments in RFe12-type Compounds for Permanent Magnets. Scr. Mater. 2018, 154, 284–288. https://doi.org/10.1016/j.scriptamat.2017.10.033.Search in Google Scholar
2. Hadjipanayis, G.; Gabay, A.; Schönhöbel, A.; Martín-Cid, A.; Barandiaran, J.; Niarchos, D. ThMn12-type Alloys for Permanent Magnets. Engineering 2020, 6, 141–147. https://doi.org/10.1016/j.eng.2018.12.011.Search in Google Scholar
3. Tozman, P.; Sepehri-Amin, H.; Hono, K. Prospects for the Development of SmFe12-Based Permanent Magnets with a ThMn12-type Phase. Scr. Mater. 2021, 194, 113686. https://doi.org/10.1016/j.scriptamat.2020.113686.Search in Google Scholar
4. Takahashi, Y.; Sepehri-Amin, H.; Ohkubo, T. Recent Advances in SmFe12-Based Permanent Magnets. Sci. Technol. Adv. Mater. 2021, 22, 449–460. https://doi.org/10.2497/jjspm.69.S74.Search in Google Scholar
5. Hu, B.; Li, H.; Gavigan, J.; Coey, J. Intrinsic Magnetic Properties of the Iron-Rich ThMn12-Structure Alloys R(Fe11Ti); R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu. J. Phys.: Condens. Matter 1989, 1, 755–770. https://doi.org/10.1088/0953-8984/1/4/009.,Search in Google Scholar
6. Shen, J.; Qian, P.; Chen, N. Theoretical Investigation on the Phase Stability and Site Preference of R(Co, T)12 and R(Co, T)12Nx (R=Y, Ce, Pr, Nd, Sm, Gd, Tb, Ho, Er, Dy, T=Mo, Mn, Ni). Mod. Phys. Lett. B 2003, 17, 897–907. https://doi.org/10.1142/S0217984903005950.Search in Google Scholar
7. Harashima, Y.; Fukazawa, T.; Kino, H.; Miyake, T. Effect of R-Site Substitution and the Pressure on Stability of RFe12: A First-Principles Study. J. Appl. Phys. 2018, 124, 163902. https://doi.org/10.1063/1.5050057.Search in Google Scholar
8. Ohashi, K.; Ido, H.; Konno, K.; Yoneda, Y. Magnetic Properties of RTiCo11 Compounds with the ThMn12 Structure. J. Appl. Phys. 1991, 70, 5986–5988. https://doi.org/10.1063/1.350069.Search in Google Scholar
9. Zhou, C.; Pinkerton, F.; Herbst, J. Magnetic Properties of CeFe11-xCoxTi with ThMn12 Structure. J. Appl. Phys. 2014, 115, 17C716. https://doi.org/10.1063/1.4863382.Search in Google Scholar
10. Hirayama, Y.; Takahashi, Y.; Hirosawa, S.; Hono, K. Intrinsic Hard Magnetic Properties of Sm(Fe1-xCox)12 Compound with the ThMn12 Structure. Scr. Mater. 2017, 138, 62–65. https://doi.org/10.1016/j.scriptamat.2017.05.029.Search in Google Scholar
11. Zhang, J. S.; Tang, X.; Bolyachkin, A.; Srinithi, A. K.; Ohkubo, T.; Sepehri-Amin, H.; Hono, K. Microstructure and Extrinsic Magnetic Properties of Anisotropic Sm(Fe,Ti,V)12-based Sintered Magnets. Acta Mater. 2022, 238, 118228. https://doi.org/10.1016/j.actamat.2022.118228.Search in Google Scholar
12. Tozman, P.; Sepehri-Amin, H.; Ohkubo, T.; Hono, K. Intrinsic Magnetic Properties of (Sm,Gd)Fe12-Based Compounds with Minimized Addition of Ti. J. Alloys Compd. 2021, 855, 157491. https://doi.org/10.1016/j.jallcom.2020.157491.Search in Google Scholar
13. Sepehri-Amin, H.; Tamazawa, Y.; Kambayashi, M.; Saito, G.; Takahashi, Y. K.; Ogawa, D.; Ohkubo, T.; Hirosawa, S.; Doi, M.; Shima, T.; Hono, K. Achievement of High Coercivity in Sm (Fe0.8Co0.2)12 Anisotropic Magnetic Thin Film by Boron Doping. Acta Mater. 2020, 194, 337–342. https://doi.org/10.1016/j.actamat.2020.05.026.Search in Google Scholar
14. Chen, C.; Huang, Y. L.; Yao, Y. F.; Fu, X. K.; Li, W.; Hou, Y. H. Effects of Thermal Annealing on Improved Magnetic Properties and Microstructure for SmFe11Ti Alloy. J. Magn. Magn. Mater. 2021, 530, 167950. https://doi.org/10.1016/j.jmmm.2021.167950.Search in Google Scholar
15. Tozman, P.; Sepehri-Amin, H.; Takahashi, Y. K.; Hirosawa, S.; Hono, K. Intrinsic Magnetic Properties of Sm (Fe1-xCox)11Ti and Zr-Substituted Sm1-yZry(Fe0.8Co0.2)11.5Ti0.5 Compounds with ThMn12 Structure toward the Development of Permanent Magnets. Acta Mater. 2018, 153, 354–363. https://doi.org/10.1016/j.actamat.2018.05.008.Search in Google Scholar
16. Li, Y. C.; Yu, N. J.; Wu, Q.; Pan, M. X.; Zhang, S. Y.; Ge, H. L. Role and Optimization of Thermal Annealing in Sm0.74Zr0.26(Fe0.8Co0.2)11Ti Alloys with ThMn12 Structure. J. Magn. Magn. Mater. 2022, 549, 169065. https://doi.org/10.1016/j.jmmm.2022.169065.Search in Google Scholar
17. Makurenkova, A.; Ogawa, D.; Tozman, P.; Okamoto, S.; Nikitin, S.; Hirosawa, S.; Hono, K.; Takahashi, Y. K. Intrinsic Hard Magnetic Properties of Sm(Fe,Co)12-xTix Compound with ThMn12 Structure. J. Alloys Compd. 2021, 861, 158477. https://doi.org/10.1016/j.jallcom.2020.158477.Search in Google Scholar
18. Wuest, H.; Bommer, L.; Huber, A. M.; Goll, D.; Weissgaerber, T.; Kieback, B. Preparation of Nanocrystalline Ce1-xSmx(Fe, Co)11Ti by Melt Spinning and Mechanical Alloying. J. Magn. Magn. Mater. 2017, 428, 194–197. https://doi.org/10.1016/j.jmmm.2016.12.036.Search in Google Scholar
19. Zhou, C.; Tessema, M.; Meyer, M. S.; Pinkerton, F. E. Synthesis of CeFe10.5Mo1.5 with ThMn12-type Structure by Melt Spinning. J. Magn. Magn. Mater. 2013, 336, 26–28. https://doi.org/10.1016/j.jmmm.2013.02.031.Search in Google Scholar
20. Tozman, P.; Sepehri-Amin, H.; Tang, X.; Ohkubo, T.; Hono, K. Development of Co-lean (Sm,Y)(Fe,Co,Ti)12 Compounds with Large Saturation Magnetization. Appl. Phys. Express 2022, 15, 045505. https://doi.org/10.35848/1882-0786/ac5b34.Search in Google Scholar
21. Hagiwara, M.; Sanada, N.; Sakurada, S. Effect of Y Substitution on the Structural and Magnetic Properties of Sm(Fe0.8Co0.2)11.4Ti0.6. J. Magn. Magn. Mater. 2018, 465, 554–558. https://doi.org/10.1016/j.jmmm.2018.06.042.Search in Google Scholar
22. Zhao, L. Z.; Su, R.; Wen, L.; Li, W.; Liu, X. L.; Zhang, Z. H.; Zhao, R. Z.; Han, Y. Y.; Zhang, X. F.; Li, W. Intrinsically High Magnetic Performance in Core-Shell Structural (Sm,Y)Fe12-based Permanent Magnets. Adv. Mater. 2022, 34, 2203503. https://doi.org/10.1002/adma.202270208.Search in Google Scholar
23. Harashima, Y.; Fukazawa, T.; Miyake, T. Cerium as a Possible Stabilizer of ThMn12-type Iron-Based Compounds: A First-Principles Study. Scr. Mater. 2020, 179, 12–15. https://doi.org/10.1016/j.scriptamat.2020.01.004.Search in Google Scholar
24. Martin-Cid, A.; Salazar, D.; Schönhöbel, A. M.; Garitaonandia, J. S.; Barandiaran, J. M.; Hadjipanayis, G. C. Magnetic Properties and Phase Stability of Tetragonal Ce1-xSmxFe9Co2Ti 1:12 Phase for Permanent Magnets. J. Alloys Compd. 2018, 749, 640–644. https://doi.org/10.1016/j.jallcom.2018.03.325.Search in Google Scholar
25. Jang, T. S.; Stadelmaier, H. H. Phase Equilibria and Magnetic Properties of Iron-Rich Fe–Nd–Ti and Fe–Sm–Ti Alloys. J. Appl. Phys. 1990, 67, 4957–4959. https://doi.org/10.1063/1.344746.Search in Google Scholar
26. Liu, P. P.; Dai, F. L.; Luo, L.; Chen, D. K.; Yao, Q. R.; Wang, J.; Rao, G. H.; Zhou, H. Y. Experimental Study and Thermodynamic Calculation of the Sm–Co–Fe System. Calphad 2022, 78, 102447. https://doi.org/10.1016/j.calphad.2022.102447.Search in Google Scholar
27. Chen, D. K.; Luo, L.; Dai, F. L.; Liu, P. P.; Yao, Q. R.; Wang, J.; Rao, G. H.; Zhou, H. Y. Phase Equilibria in Sm–Co–Ti Ternary System. J. Phase Equilib. Diffus. 2022, 43, 317–331. https://doi.org/10.1007/s11669-022-00965-6.Search in Google Scholar
28. Luo, L.; Chen, D. K.; Dai, F. L.; Liu, P. P.; Yao, Q. R.; Wang, J.; Rao, G. H.; Zhou, H. Y. Experimental Determination of Phase Equilibria in the Sm–Co–Zr Ternary System. Calphad 2022, 79, 102485. https://doi.org/10.1016/j.calphad.2022.102485.Search in Google Scholar
29. Liu, X. Y.; Liu, P. P.; Tan, C.; Yang, S. Y.; Bai, Y. C.; Wang, J.; Rao, G. H.; Zhou, H. Y. Thermodynamic Description of the La–Co–Fe and Ce–Co–Fe Ternary Systems. Calphad 2024, 84, 102653. https://doi.org/10.1016/j.calphad.2023.102653.Search in Google Scholar
30. Li, T. B.; Liu, X. Y.; Cheng, W. F.; Tan, C.; Yao, Q. R.; Wang, J.; Rao, G. H.; Zhou, H. Y. Experimental Determination of Phase Equilibria in the La–Co–Zr System. J. Phase Equilib. Diffus. 2024, 45, 804–819. https://doi.org/10.1007/s11669-024-01135-6.Search in Google Scholar
31. Zheng, X. P.; Liu, X.; Yang, S. Y.; Wang, J.; Yao, Q. R.; Du, Y. S.; Zhang, L. G.; Rao, G. H.; Zhou, H. Y. Experimental Determination of Phase Equilibria in the Ce–Co–Zr Ternary System. J. Phase Equilib. Diffus. 2023, 44, 324–339. https://doi.org/10.1007/s11669-023-01045-z.Search in Google Scholar
32. Yang, S. Y.; Wang, J.; Liu, X.; Zheng, X. P.; Ye, H. J.; Yao, Q. R.; Du, Y. S.; Rao, G. H.; Zhou, H. Y. Experimental Study and Thermodynamic Calculation of the Y–Co–Fe System. Calphad 2023, 82, 102592. https://doi.org/10.1016/j.calphad.2023.102592.Search in Google Scholar
33. Liu, X.; Wang, J.; Yang, S. Y.; Zheng, X. P.; Yao, Q. R.; Du, Y. S.; Zhang, L. G.; Rao, G. H.; Zhou, H. Y. Experimental Determination of Phase Equilibria in the Y–Co–Ti Ternary System through Diffusion Couples and Equilibrium Alloys. Calphad 2023, 81, 102551. https://doi.org/10.1016/j.calphad.2023.102551.Search in Google Scholar
34. Liu, X.; Wang, J.; Yao, Q. R.; Du, Y. S.; Zhang, L. G.; Rao, G. H.; Zhou, H. Y. Experimental Study of Phase Equilibria in Y–Co–Zr System at 600°C and 800°C. Calphad 2024, 86, 102719. https://doi.org/10.1016/j.calphad.2024.102719.Search in Google Scholar
35. Fujii, H.; Satyanarayana, M. V.; Wallace, W. E. Magnetic and Crystallographic Properties of Substituted Ce2Co17-xTx Compounds (T= Ti, V, Cr, Mn, Fe, Cu, Zr, and Hf). J. Appl. Phys. 1982, 53, 2371–2373. https://doi.org/10.1063/1.330861.Search in Google Scholar
36. Khan, Y. Intermetallic Compounds in the Cobalt-Rich Part of the R-Cobalt Systems (R=Ce, La, Ce-La). J. Less-Common Met. 1974, 34, 191–200. https://doi.org/10.1016/0022-5088(74)90159-3.Search in Google Scholar
37. Meyer-Liautaud, F.; Derkaoui, S.; Allibert, C. H.; Castanet, R. Structural and Thermodynamic Data on the Pseudobinary Phases R(Co1-xCux)5 with R=Sm. Y, Ce. J. Less-Common. Met. 1987, 127, 231–242. https://doi.org/10.1016/0022-5088(87)90383-3.Search in Google Scholar
38. Wu, C. H.; Chuang, Y. C.; Jin, X. M.; Guan, X. H. Reinvestigation of the Ce–Co System. Z. MetaIlkd 1991, 82, 621–625. https://doi.org/10.1515/ijmr-1991-820806.Search in Google Scholar
39. Su, X. P.; Zhang, W. J.; Du, Z. M. A Thermodynamic Modelling of the Co–ce System. J. Alloys Compd. 1998, 267, 121–127. https://doi.org/10.1016/S0925-8388(97)00563-X.Search in Google Scholar
40. Fartushna, I.; Mardani, M.; Khvan, A.; Donkor, E.; Cheverikin, V.; Kondratiev, A.; Dinsdale, A. Investigation of Phase Equilibria in the Ce–Co–Fe System during Solidification. J. Alloys Compd. 2018, 735, 1682–1693. https://doi.org/10.1016/j.jallcom.2017.11.290.Search in Google Scholar
41. Murray, J. L. The Co–ti (Cobalt–titanium) System. J. Phase Equilib. 1982, 3, 74–85. https://doi.org/10.1007/BF02873414.Search in Google Scholar
42. Cacciamani, G.; Ferro, R.; Ansara, I.; Dupin, N. Thermodynamic Modelling of the Co–ti System. Intermetallics 2000, 8, 213–222. https://doi.org/10.1016/S0966-9795(99)00098-9.Search in Google Scholar
43. Davydov, A. V.; Kattner, U. R.; Josell, D.; Waterstrat, R. M.; Boettinger, W. J.; Blendell, J. E.; Shapiro, A. J. Determination of the CoTi Congruent Melting Point and Thermodynamic Reassessment of the Co–ti System. Metall. Mater. Trans. A 2001, 32, 2175–2186. https://doi.org/10.1007/s11661-001-0193-8.Search in Google Scholar
44. Wu, L. Y.; Zeng, Y. P.; Pan, Y. F.; Du, Y.; Peng, Y. B.; Li, H.; Liu, S. H.; Zhang, L. G.; Liu, L. B. Thermodynamic Description and Simulation of Solidification Microstructure in the Co–ti System. J. Chem. Thermodyn. 2020, 142, 105995. https://doi.org/10.1016/j.jct.2019.105995.Search in Google Scholar
45. Stein, F.; Merali, M.; Watermeyer, P. The Co–ti System Revisited: about the Cubic-To-Hexagonal Laves Phase Transformation and Other Controversial Features of the Phase Diagram. Calphad 2019, 67, 101681. https://doi.org/10.1016/j.calphad.2019.101681.Search in Google Scholar
46. Zhou, C.; Guo, C. P.; Li, C. R.; Du, Z. M. Experimental Determination and Thermodynamic Assessment of the Co–ni–ti System. Calphad 2018, 63, 61–76. https://doi.org/10.1016/j.calphad.2018.08.011.Search in Google Scholar
47. Taylor, J. L. Preliminary Investigation of the Ti–Ce System. The. Minerals. Metals 1957, 9, 94–96. https://doi.org/10.1007/BF03398462.Search in Google Scholar
48. Savitskii, E. M.; Burkhanov, G. S.; Diagramy Sostoyaniya Splavov Titan-Lantan I Titan-Tserii. Zh. Neorg. Khim. 1957, 2, 2609–2616.Search in Google Scholar
49. Savitskii, E. M.; Burkhanov, G. S. Phasen-diagramme von Titan-legierungen mit seltenen erdmetallen. J. Less-Common Met. 1962, 4, 301–314. https://doi.org/10.1016/0022-5088(62)90001-2.Search in Google Scholar
50. Murray, J. L. In Binary alloy phase diagrams; Massalski, T. B., Ed.; ASM International: OH, 1986.Search in Google Scholar
51. Yao, B.; Hu, B.; Zhang, A. N.; Zhao, J. R.; Wang, J.; Du, Y. Thermodynamic Assessment of the Ti–RE (RE=Ce, Er, Tm, Y) Binary Systems. J. Phase Equilib. Diffus. 2018, 39, 44–50. https://doi.org/10.1007/s11669-017-0605-0.Search in Google Scholar
52. Ohasi, K.; Tawara, Y.; Osugi, R.; Sakurai, J.; Komura, Y. Identification of the Intermetallic Compound Consisting of Sm, Ti, Fe. J. Less-Common Met. 1988, 139, L1–L5. https://doi.org/10.1016/0022-5088(88)90020-3.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Enhancing polymer composites with date palm residues for sustainable innovation: a review
- Original Papers
- Performance assessment of disc brake systems fabricated from eco-friendly materials
- Study on tribological behavior of Phyllostachys bambusoides bamboo fiber reinforced epoxy composites from Arunachal Pradesh, India
- Charcoal ash derived from mature-wood twigs of neem (Azadirachta indica): an economical, accessible material with multifaceted application potential
- Degradation of organic pollutant through ternary metal oxides nanocomposite (MgO–CaO–CoO) photocatalyst synthesized using Daucus carota pomace extract
- Eco-friendly synthesis of Cr2O3 nanoparticles with antioxidant, antidiabetic, and antibacterial activities
- Increased magnetic coercivity and enhanced microwave absorption in Cr2+–Al3+ doped BaSr ferrites and the composites with multiwall carbon nanotube
- Experimental determination of phase equilibria in the Ce–Co–Ti ternary system
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Enhancing polymer composites with date palm residues for sustainable innovation: a review
- Original Papers
- Performance assessment of disc brake systems fabricated from eco-friendly materials
- Study on tribological behavior of Phyllostachys bambusoides bamboo fiber reinforced epoxy composites from Arunachal Pradesh, India
- Charcoal ash derived from mature-wood twigs of neem (Azadirachta indica): an economical, accessible material with multifaceted application potential
- Degradation of organic pollutant through ternary metal oxides nanocomposite (MgO–CaO–CoO) photocatalyst synthesized using Daucus carota pomace extract
- Eco-friendly synthesis of Cr2O3 nanoparticles with antioxidant, antidiabetic, and antibacterial activities
- Increased magnetic coercivity and enhanced microwave absorption in Cr2+–Al3+ doped BaSr ferrites and the composites with multiwall carbon nanotube
- Experimental determination of phase equilibria in the Ce–Co–Ti ternary system
- News
- DGM – Deutsche Gesellschaft für Materialkunde