Home Degradation of organic pollutant through ternary metal oxides nanocomposite (MgO–CaO–CoO) photocatalyst synthesized using Daucus carota pomace extract
Article
Licensed
Unlicensed Requires Authentication

Degradation of organic pollutant through ternary metal oxides nanocomposite (MgO–CaO–CoO) photocatalyst synthesized using Daucus carota pomace extract

  • Noor Fatima Tariq Siddiqui , Fazila Mushtaq EMAIL logo , Jamaluddin Mahar EMAIL logo , Muhammad Tariq ORCID logo EMAIL logo , Sajjad Haider , Kamran Alam and Anila Iqbal
Published/Copyright: March 26, 2025
Become an author with De Gruyter Brill

Abstract

In this work, ternary nanocomposite MgO–CaO–CoO has been synthesized via a green approach using Daucus carota pomace extract as reducing and capping agent. The structure, morphology, average particle size and elemental composition of the synthesized nanocomposite were determined using different techniques including Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The Fourier transform infrared spectrophotometer spectrum showed stretching vibrations of metal oxide bonds such as Co–O, Mg–O and Ca–O at 666 cm−1, 694 cm−1 and 721 cm−1 which confirmed the synthesis of CaO–MgO–CoO nanocomposite. X-ray diffraction study validated the crystalline structure of the ternary nanocomposite, revealing an average crystallite size of 20.33 nm. The scanning electron microscopy study revealed irregular agglomerated stone-like morphology that confirmed the formation of ternary nanocomposite. Energy-dispersive X-ray spectroscopy was used to analyze the elemental composition. The presence of elements such as calcium (Ca), magnesium (Mg), cobalt (Co), and oxygen confirmed the presence of Ca–O, Mg–O, Co–O in the synthesized nanocatalyst. The photo-catalytic activity of ternary nanocomposite (CaO–MgO–CoO) was assessed for degradation of organic pollutant, specifically RhB, under sunlight exposure. Effects of various parameters such as photocatalyst dose (5–20 mg L−1), solution pH (3–11) and irradiation time (30–180 min) on the extent of removal of dye showed a high degradation efficiency of 97 %. It has been deduced through a scavenger experiment, utilizing DMSO and ASC as scavenger for hydroxyl radicals (•OH) and oxide (O2 ) radicals respectively, that hydroxide and oxide radicals are the main reactive species in the photodegradation process.


Corresponding authors: Fazila Mushtaq and Muhammad Tariq, Division of Inorganic Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan, E-mail: (F. Mushtaq), (M. Tariq); and Jamaluddin Mahar, Department of Chemistry, Times Institute, Multan, Punjab, Pakistan, E-mail:

Acknowledgments

The authors are thankful to Bahauddin Zakariya University Multan, Pakistan for financial support during the research work. The authors sincerely appreciate funding from Researchers Supporting Project number (RSP2025R399), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Noor Fatima Tariq Siddiqui: Methodology, Investigation, and Writing – original draft, Fazila Mushtaq: Conceptualization, Reviewing & Editing. Jamaluddin Mahar: Resources, Supervision, Muhammad Tariq: Data Curation, writing-Reviewing & Editing, Sajjad Haider: Conceptualization, Investigation, Kamran Alam: Review & Editing Anila Iqbal: Formal analysis.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors sincerely appreciate funding from Researchers Supporting Project number (RSP2025R399), King Saud University, Riyadh, Saudi Arabia.

  7. Data availability: Not applicable. All the data relevant to this study has been included in manuscript.

References

1. Angelakis, A. N.; Capodaglio, A. G.; Passchier, C. W.; Valipour, M.; Krasilnikoff, J.; Tzanakakis, V. A.; Sürmelihindi, G.; Baba, A.; Kumar, R.; Haut, B.; Roubelakis, M. G.; Min, Z.; Dercas, N. Sustainability of Water, Sanitation, and Hygiene: from Prehistoric Times to the Present Times and the Future. Water 2023, 15 (8), 1614. https://doi.org/10.3390/w15081614.Search in Google Scholar

2. Wu, C.; Liu, W.; Deng, H. Urbanization and the Emerging Water Crisis: Identifying Water Scarcity and Environmental Risk with Multiple Applications in Urban Agglomerations in Western China. Sustainability 2023, 15 (17), 12977. https://doi.org/10.3390/su151712977.Search in Google Scholar

3. Ismail, M.; Akhtar, K.; Khan, M. I.; Kamal, T.; Khan, M. A.; Asiri, M. A.; Seo, J., Khan, S. B. Pollution, Toxicity and Carcinogenicity of Organic Dyes and Their Catalytic Bio-Remediation. Curr. Pharm. Des. 2019, 25 (34), 3645–3663. https://doi.org/10.2174/1381612825666191021142026 Search in Google Scholar PubMed

4. Lellis, B.; Fávaro-Polonio, C. Z.; Pamphile, J. A.; Polonio, J. C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotechnol. Res. Innov. 2019, 3 (2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001 Search in Google Scholar

5. Akter, T.; Protity, A. T.; Shaha, M.; Al Mamun, M.; Hashem, A. The Impact of Textile Dyes on the Environment. In Nanohybrid Materials For Treatment of Textiles Dyes; Springer Nature: Singapore, 2023; pp. 401–431.10.1007/978-981-99-3901-5_17Search in Google Scholar

6. Din, M. I.; Khalid, R.; Najeeb, J.; Hussain, Z. Fundamentals and Photocatalysis of Methylene Blue Dye Using Various Nanocatalytic Assemblies-A Critical Review. J. Clean. Prod. 2021, 298, 126567. https://doi.org/10.1016/j.jclepro.2021.126567.Search in Google Scholar

7. Waghchaure, R. H.; Adole, V. A.; Jagdale, B. S. Photocatalytic Degradation of Methylene Blue, Rhodamine B, Methyl Orange and Eriochrome Black T Dyes by Modified ZnO Nanocatalysts: A Concise Review. Inorg. Chem. Commun. 2022, 143, 109764. https://doi.org/10.1016/j.inoche.2022.109764.Search in Google Scholar

8. Yildirim, O. A.; Bahadir, M.; Pehlivan, E. Detrimental Effects of Commonly Used Textile Dyes on the Aquatic Environment and Human Health–A Review. Fresen. Environ. Bull. 2022, 31, 9329–9345.Search in Google Scholar

9. Zhao, Y.; Qamar, S. A.; Qamar, M.; Bilal, M.; Iqbal, H. M. Sustainable Remediation of Hazardous Environmental Pollutants Using Biochar-Based Nanohybrid Materials. Environ. Manag. 2021, 300, 113762. https://doi.org/10.1016/j.jenvman.2021.113762.Search in Google Scholar PubMed

10. Pivokonsky, M.; Novotna, K.; Petricek, R.; Cermakova, L.; Prokopova, M.; Naceradska, J. Fundamental Chemical Aspects of Coagulation in Drinking Water Treatment–Back to Basics. J. Water Process. Eng. 2024, 57, 10466. https://doi.org/10.1016/j.jwpe.2023.104660.Search in Google Scholar

11. Saravanan, A.; Kumar, P. S.; Jeevanantham, S.; Karishma, S.; Tajsabreen, B.; Yaashikaa, P. R.; Reshma, B. Effective Water/wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications towards Sustainable Development. Chemosphere 2021, 280, 130595. https://doi.org/10.1016/j.chemosphere.2021.130595.Search in Google Scholar PubMed

12. Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995.Search in Google Scholar PubMed

13. Ponnusami, A. B.; Sinha, S.; Ashokan, H.; Paul, M. V.; Hariharan, S. P.; Arun, J.; Gopinath, K. P.; Le, Q. H.; Pugazhendhi, A. Advanced Oxidation Process (AOP) Combined Biological Process for Wastewater Treatment: A Review on Advancements, Feasibility and Practicability of Combined Techniques. Environ. Res. 2023, 237, 116944. https://doi.org/10.1016/j.envres.2023.116944.Search in Google Scholar PubMed

14. Hušek, M.; Moško, J.; Pohořelý, M. Sewage Sludge Treatment Methods and P-Recovery Possibilities: Current State-Of-The-Art. J. Environ. Manage. 2022, 315, 115090. https://doi.org/10.1016/j.jenvman.2022.115090.Search in Google Scholar PubMed

15. Khan, R.; Shukla, S.; Kumar, M.; Zuorro, A.; Pandey, A. Sewage Sludge Derived Biochar and its Potential for Sustainable Environment in Circular Economy: Advantages and Challenges. Chem. Eng. J. 2023, 144495. https://doi.org/10.1016/j.cej.2023.144495.Search in Google Scholar

16. Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; Wang, L.; Liu, H.; Liu, Y.; Ruan, R. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. https://doi.org/10.1016/j.jclepro.2020.121725.Search in Google Scholar

17. Haleem, A.; Shafiq, A.; Chen, S. Q.; Nazar, M. A. Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28 (3), 1081. https://doi.org/10.3390/molecules28031081.Search in Google Scholar PubMed PubMed Central

18. Lotfi, S.; Ouardi, M. E.; Ahsaine, H. A.; Assani, A. Recent Progress on the Synthesis, Morphology and Photocatalytic Dye Degradation of BiVO4 Photocatalysts: A Review. Catal. Rev. 2024, 66 (1), 214–258. https://doi.org/10.1080/01614940.2022.2057044.Search in Google Scholar

19. Joshi, N. C.; Gururani, P. Advances of Graphene Oxide Based Nanocomposite Materials in the Treatment of Wastewater Containing Heavy Metal Ions and Dyes. Curr. Res. Green Sustain. Chem. 2022, 5, 100306. https://doi.org/10.1016/j.crgsc.2022.100306.Search in Google Scholar

20. Danish, M. S. S.; Bhattacharya, A.; Stepanova, D.; Mikhaylov, A.; Grilli, M. L.; Khosravy, M.; Senjyu, T. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. Metals 2020, 10 (12), 1604. https://doi.org/10.3390/met10121604.Search in Google Scholar

21. Liu, X.; Yang, Z.; Zhang, L. In-situ Fabrication of 3D Hierarchical Flower-like β-Bi2O3@ CoO Z-Scheme Heterojunction for Visible-Driven Simultaneous Degradation of Multi-Pollutants. J. Hazard. Mater. 2021, 403, 123566. https://doi.org/10.1016/j.jhazmat.2020.123566.Search in Google Scholar PubMed

22. Malik, M.; Ibrahim, S. M.; Nazir, M. A.; Tahir, A. A.; Tufail, M. K.; Shah, S. S. A.; Anum, A.; Wattoo, M. A.; Rehman, A. U. Engineering of a Hybrid G-C3N4/ZnO-W/Cox Heterojunction Photocatalyst for the Removal of Methylene Blue Dye. Catalysts 2023, 13 (5), 813. https://doi.org/10.3390/catal13050813.Search in Google Scholar

23. Sudharani, A.; Mangiri, R.; Kumar, K. S.; Reddy, L.; Vijayalakshmi, R. P. Facile Solvothermal Synthesis of CoO/BiOI Flower-like Nanocomposites for Degradation of RhB under Visible-Light Irradiation. J. Mater. Sci. Mater. Electron. 2024, 35 (4), 309. https://doi.org/10.1007/s10854-024-11974-1.Search in Google Scholar

24. Joshi, S.; Sabri, Y. M.; Bhargava, S. K.; Sunkara, M. V.; Ippolito, S. J. Band Offset in Calcium Hydroxide Mediated CaO-ZnO Heterointerfaces. Mater. Sci. Eng. 2021, 265 (B), 115005. https://doi.org/10.1016/j.mseb.2020.115005.Search in Google Scholar

25. Malik, A. Q.; Mir, T. U. G.; Kumar, D.; Mir, I. A.; Rashid, A.; Ayoub, M.; Shukla, S. A Review on the Green Synthesis of Nanoparticles, Their Biological Applications, and Photocatalytic Efficiency against Environmental Toxins. Environ. Sci. Pollut. Res. 2023, 30 (27), 69796–69823. https://doi.org/10.1007/s11356-023-27437-9.Search in Google Scholar PubMed

26. Tabrizi Hafez Moghaddas, S. S.; Samareh Moosavi, S.; Kazemi Oskuee, R. Green Synthesis of Calcium Oxide Nanoparticles in Linum usitatissimum Extract and Investigation of Their Photocatalytic and Cytotoxicity Effects. Biomass Convers. Biorefin. 2024, 14 (4), 5125–5134. https://doi.org/10.1007/s13399-022-02643-6.Search in Google Scholar

27. Torres-Ramos, M. I.; Martín-Camacho, U. D. J.; González, J. L.; Yañez-Acosta, M. F.; Becerra-Solano, L.; Gutiérrez-Mercado, Y. K.; Macias-Carballo, M.; Gómez, C. M.; González-Vargas, O. A.; Rivera-Mayorga, J. A.; Pérez-Larios, A. A Study of Zn-Ca Nanocomposites and Their Antibacterial Properties. Int. J. Mol. Sci. 2022, 23 (13), 7258. https://doi.org/10.3390/ijms23137258.Search in Google Scholar PubMed PubMed Central

28. Luo, X.; Wu, S.; Xiao, M.; Gu, H.; Zhang, H.; Chen, J.; Liu, Y.; Zhang, C.; Zhang, J. Advances and Prospects of Prolamine Corn Protein Zein as Promising Multifunctional Drug Delivery System for Cancer Treatment. Int. J. Nanomed. 2023, 2589–2621. https://doi.org/10.2147/IJN.S402891.Search in Google Scholar PubMed PubMed Central

29. Munawar, T.; Mukhtar, F.; Yasmeen, S.; Naveed-ur-Rehman, M.; Nadeem, M. S.; Riaz, M.; Mansoor, M.; Iqbal, F. Sunlight-induced Photocatalytic Degradation of Various Dyes and Bacterial Inactivation Using CuO–MgO–ZnO Nanocomposite. Environ. Sci. Pollut. Res. 2021, 28, 42243–42260. https://doi.org/10.1007/s11356-021-13572-8.Search in Google Scholar PubMed

30. Alamri, A.; Wu, C.; Nasreen, S.; Tran, H.; Yassin, O.; Gentile, R.; Kamal, D.; Ramprasad, R.; Cao, Y.; Sotzing, G. High Dielectric Constant and High Breakdown Strength Polyimide via Tin Complexation of the Polyamide Acid Precursor. RSC Adv. 2022, 12 (15), 9095–9100; https://doi.org/10.1039/D1RA06302B.Search in Google Scholar PubMed PubMed Central

31. Parvizi, E.; Tayebee, R.; Koushki, E. Mg-doped ZnO and Zn-Doped MgO Semiconductor Nanoparticles; Synthesis and Catalytic, Optical and Electro-Optical Characterization. Semiconductors 2019, 53, 1769–1783. https://doi.org/10.1134/S1063782619130141.Search in Google Scholar

32. Edebali, S.; Oztekin, Y.; Arslan, G. Metallic Engineered Nanomaterial for Industrial Use. In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, Netherlands, 2018; pp. 67–73.10.1016/B978-0-12-813351-4.00004-3Search in Google Scholar

33. Zadehnazari, A. Metal Oxide/polymer Nanocomposites: A Review on Recent Advances in Fabrication and Applications. Polym.-Plast. Technol. Mater. 2023, 62 (5), 655–700. https://doi.org/10.1080/25740881.2022.2129387.Search in Google Scholar

34. Rane, A. V.; Kanny, K.; Abitha, V. K.; Thomas, S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Syn. Inorg. Manomater., 2018, 121–139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1.Search in Google Scholar

35. Abideen, Z. U.; Kim, J. H.; Lee, J. H.; Kim, J. Y.; Mirzaei, A.; Kim, H. W.; Kim, S. S.; Abideen, Z. U.; Kim, J. H.; Lee, J. H.; Kim, J. Y. Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review. J. Korean Ceram. Soc. 2017, 54 (5), 366–379. https://doi.org/10.1016/j.jallcom.2021.158745.Search in Google Scholar

36. Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I. H.; Valiev, G. H.; Kianfar, E. Nanomaterial by Sol-gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021 (1), 5102014. https://doi.org/10.1155/2021/5102014.Search in Google Scholar

37. González-Arias, J.; Sánchez, M. E.; Cara-Jiménez, J.; Baena-Moreno, F. M.; Zhang, Z. Hydrothermal Carbonization of Biomass and Waste: A Review. Environ. Chem. Lett. 2022, 1–11. https://doi.org/10.1007/s10311-021-01311-x.Search in Google Scholar

38. Huo, Y.; Xiu, S.; Meng, L. Y.; Quan, B. Solvothermal Synthesis and Applications of Micro/nano Carbons: A Review. Chem. Eng. J. 2023, 451, 138572. https://doi.org/10.1016/j.cej.2022.138572.Search in Google Scholar

39. Basak, M.; Rahman, M. L.; Ahmed, M. F.; Biswas, B.; Sharmin, N. Calcination Effect on Structural, Morphological and Magnetic Properties of Nano-Sized CoFe2O4 Developed by a Simple Co-precipitation Technique. Mater. Chem. Phys. 2021, 264, 124442. https://doi.org/10.1016/j.matchemphys.2021.124442.Search in Google Scholar

40. Ramezankhani, M.; Crawford, B.; Narayan, A.; Voggenreiter, H.; Seethaler, R.; Milani, A. S. Making Costly Manufacturing Smart with Transfer Learning under Limited Data: A Case Study on Composites Autoclave Processing. J. Manuf. Syst. 2021, 59, 345–354. https://doi.org/10.1016/j.jmsy.2021.02.015.Search in Google Scholar

41. Tabrizi, G. B.; Mehrvar, M. Integration of Advanced Oxidation Technologies and Biological Processes: Recent Developments, Trends, and Advances. J. Environ. Sci. 2004, 39 (11–12), 3029–3081. https://doi.org/10.1081/LESA-200034939.Search in Google Scholar

42. Sabouri, Z.; Oskuee, R. K.; Sabouri, S.; Moghaddas, S. S. T. H.; Samarghandian, S.; Abdulabbas, H. S.; Darroudi, M. Phytoextract-mediated Synthesis of Ag-Doped ZnO–MgO–CaO Nanocomposite Using Ocimum Basilicum L Seeds Extract as a Highly Efficient Photocatalyst and Evaluation of Their Biological Effects. Ceram. Int. 2023, 49 (12), 20989–20997. https://doi.org/10.1016/j.ceramint.2023.03.234.Search in Google Scholar

43. Prasad, K.; Haq, R. U.; Bansal, V.; Siddiqui, M. W.; Ilahy, R. C. Secondary Metabolites and Their Prospective Health Benefits. In Plant Secondary Metabolites, Vol. Two; Apple academic press: New York, 2017; pp. 133–220.Search in Google Scholar

44. Soni, A.; Sosa, S. Phytochemical Analysis and Free Radical Scavenging Potential of Herbal and Medicinal Plant Extracts. J. Pharmacogn. Phytochem. 2013, 2 (4), 22–29. https://doi.org/2278-4136.Search in Google Scholar

45. Pedroso-Santana, S.; Fleitas-Salazar, N. The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Part. Syst. Charact. 2023, 40 (2), 2200146. https://doi.org/10.1002/ppsc.202200146.Search in Google Scholar

46. Letifi, H.; Dridi, D.; Litaiem, Y.; Ammar, S.; Dimassi, W.; Chtourou, R. High Efficient and Cost Effective Titanium Doped Tin Dioxide Based Photocatalysts Synthesized via Co-precipitation Approach. Catalysts 2021, 803. https://doi.org/10.3390/catal11070803.Search in Google Scholar

47. Kayış, A.; Kavgacı, M.; Yaykaşlı, H.; Kerli, S.; Eskalen, H. Investigation of Structural, Morphological, Mechanical, Thermal and Optical Properties of PVA-ZnO Nanocomposites. Chem 2021, 47, 451–461. https://doi.org/10.1134/S1087659621050084.Search in Google Scholar

48. Hanson, R. M.; Sharpless, K. B. Procedure for the Catalytic Asymmetric Epoxidation of Allylic Alcohols in the Presence of Molecular Sieves. J. Org. Chem. 1986, 1922–1925. https://doi.org/0022-3263/86/1951-1925$01.50/0.10.1021/jo00360a058Search in Google Scholar

49. Zhou, M.; Gao, X.; Hu, Y.; Chen, J.; Hu, X. Uniform Hamburger-like Mesoporous Carbon-Incorporated ZnO Nanoarchitectures: One-Pot Solvothermal Synthesis, High Adsorption and Visible-Light Photocatalytic Decolorization of Dyes. Appl. Catal. B. 2013, 138, 1–8. https://doi.org/10.1016/j.apcatb.2013.02.029.Search in Google Scholar

50. Baran, W.; Adamek, E.; Makowski, A. The Influence of Selected Parameters on the Photocatalytic Degradation of Azo-Dyes in the Presence of TiO2 Aqueous Suspension. Chem. Eng. J. 2008, 242–248. https://doi.org/10.1016/j.cej.2008.04.021.Search in Google Scholar

51. Pradhan, D.; Falletta, E.; Dash, S. K. Enhanced and Rapid Photocatalytic Degradation of Toxic Dyes by Cobalt Oxide and Modified Cobalt Oxide under Solar Light Irradiation. Opt. Mater. 2023, 135, 113368. https://doi.org/10.1016/j.optmat.2022.113368.Search in Google Scholar

52. Pachiyappan, J.; Gnanansundaram, N.; Sivamani, S.; Sankari, N. P. B. P.; Senthilnathan, N.; Kerga, G. A. Preparation and Characterization of Magnesium Oxide Nanoparticles and its Application for Photocatalytic Removal of Rhodamine B and Methylene Blue Dyes. J. Nanomater. 2022, 6484573. https://doi.org/10.1155/2022/6484573.Search in Google Scholar

53. de Menezes, L. B.; Muraro, P. C. L.; Druzian, D. M.; Ruiz, Y. P. M.; Galembeck, A.; Pavoski, G.; Espinosa, D. C. R.; da Silva, W. L. Calcium Oxide Nanoparticles: Biosynthesis, Characterization and Photocatalytic Activity for Application in Yellow Tartrazine Dye Removal. J. Photochem. Photobiol., A 2024, 447, 115182. https://doi.org/10.1016/j.jphotochem.2023.115182.Search in Google Scholar

54. Jadhav, V.; Bhagare, A.; Wahab, S.; Lokhande, D.; Vaidya, C.; Dhayagude, A.; Khalid, M.; Aher, J.; Mezni, A.; Dutta, M. Green Synthesized Calcium Oxide Nanoparticles (CaO NPs) Using Leaves Aqueous Extract of Moringa Oleifera and Evaluation of Their Antibacterial Activities. J. Nanomater. 2022, 9047507. https://doi.org/10.1155/2022/9047507.Search in Google Scholar

55. Lakra, R.; Kumar, R.; Thatoi, D. N.; Sahoo, P. K.; Soam, A. Synthesis and Characterization of Cobalt Oxide (Co3O4) Nanoparticles. Mater. Today 2021, 41, 269–271. https://doi.org/10.1016/j.matpr.2020.09.099.Search in Google Scholar

56. Gbair, G. A.; Alshamsi, H. A. Facile Green Synthesis of CuO-ZnO Nanocomposites from Argyreia Nervosa Leaves Extract for Photocatalytic Degradation of Rhodamine B Dye. Biomass Convers. Biorefin. 2022, 1–16. https://doi.org/10.1007/s13399-022-03408-x.Search in Google Scholar

57. Moussa, S.; Abdelsayed, V.; El-Shall, M. S. Laser Synthesis of Pt, Pd, CoO and Pd–CoO Nanoparticle Catalysts Supported on Graphene. Chem. Phys. Lett. 2011, 510 (4–6), 179–184. https://doi.org/10.1016/j.cplett.2011.05.026.Search in Google Scholar

58. Thomele, D.; Baumann, S. O.; Schneider, J.; Sternig, A. K.; Shulda, S.; Richards, R. M.; Schwab, T.; Zickler, G. A.; Bourret, G. R.; Diwald, O. Cubes to Cubes: Organization of MgO Particles into One-Dimensional and Two-Dimensional Nanostructures. Cryst. Growth Des. 2021, 21 (8), 4674–4682. https://doi.org/10.1021/acs.cgd.1c00535.Search in Google Scholar PubMed PubMed Central

59. Albo Hay Allah, M. A.; Alshamsi, H. A. Facile Green Synthesis of ZnO/AC Nanocomposites Using Pontederia Crassipes Leaf Extract and Their Photocatalytic Properties Based on Visible Light Activation. J. Mater. Sci. Mater. Electron. 2023, 34 (16), 1263. https://doi.org/10.1007/s10854-023-10636-y.Search in Google Scholar

60. Setarehshenas, N.; Hosseini, S. H.; Ahmadi, G. Optimization and Kinetic Model Development for Photocatalytic Dye Degradation. Arab J. Sci. Eng. 2018, 43 (11), 5785–5797. https://doi.org/10.1007/s13369-017-3010-4.Search in Google Scholar

61. Shtarev, D. S.; Shtareva, A. V.; Ryabchuk, V. K.; Rudakova, A. V.; Serpone, N. Considerations of Trends in Heterogeneous Photocatalysis. Correlations between Conduction and Valence Band Energies with Bandgap Energies of Various Photocatalysts. ChemCatChem 2019, 11 (15), 3534–3541. https://doi.org/10.1002/cctc.201900439.Search in Google Scholar

62. Gomathi, A.; Priyadharsan, A.; Handayani, M.; Kumar, K. R.; Saranya, K.; Kumar, A. S.; Srividhya, B.; Murugesan, K.; Maadeswaran, P. Pioneering Superior Efficiency in Methylene Blue and Rhodamine B Dye Degradation under Solar Light Irradiation Using CeO2/Co3O4/g-C3n4 Ternary Photocatalysts. Spectrochim. Acta, Part A 2024, 313, 124125. https://doi.org/10.1016/j.saa.2024.124125.Search in Google Scholar PubMed

63. Balamurugan, S.; Balu, A. R. Magnetically Separable CdO–TiO2–CuO Ternary Nanocomposite Photocatalyst for Effective Degradation of RhB under Visible-Light Irradiation. J. Electron. Mater. 2020, 49 (7), 4418–4430. https://doi.org/10.1007/s11664-020-08183-x.Search in Google Scholar

64. Parasuraman, B.; Shanmugam, P.; Sangaraju, S.; Rangaraju, H.; Alphonse, D. R.; Husain, M. N.; Thangavelu, P. Proficient Engineering of NiO/Cu 2 S/rGO Heterojunction Photocatalysts: Fabrication, Dye Degradation, and Mechanism Pathways towards Environmental Remediation. Environ. Sci. Adv. 2024, 3 (6), 925–936; https://doi.org/10.1039/D3VA00368J.Search in Google Scholar

65. Gao, Y.; Wang, T. Preparation of Ag2O/TiO2 Nanocomposites by Two-step Method and Study of its Degradation of RHB. J. Mol. Struct. 2021, 1224, 129049. https://doi.org/10.1016/j.molstruc.2020.129049.Search in Google Scholar

66. Mohanty, L.; Pattanayak, D. S.; Singhal, R.; Pradhan, D.; Dash, S. K. Enhanced Photocatalytic Degradation of Rhodamine B and Malachite Green Employing BiFeO3/g-C3n4 Nanocomposites: an Efficient Visible-Light Photocatalyst. Inorg. Chem. Commun. 2022, 138, 109286. https://doi.org/10.1016/j.inoche.2022.109286.Search in Google Scholar

67. Sree, G. S.; Botsa, S. M.; Reddy, B. J. M.; Ranjitha, K. V. B. Enhanced UV–Visible Triggered Photocatalytic Degradation of Brilliant Green by Reduced Graphene Oxide Based NiO and CuO Ternary Nanocomposite and Their Antimicrobial Activity. Arab. J. Chem. 2020, 13 (4), 5137–5150. https://doi.org/10.1016/j.arabjc.2020.02.012.Search in Google Scholar

68. Karthik, K.; Dhanuskodi, S.; Gobinath, C.; Prabukumar, S.; Sivaramakrishnan, S. Multifunctional Properties of Microwave Assisted CdO–NiO–ZnO Mixed Metal Oxide Nanocomposite: Enhanced Photocatalytic and Antibacterial Activities. J. Mater. Sci. Mater. Electron. 2018, 29, 5459–5471. https://doi.org/10.1007/s10854-017-8513-y.Search in Google Scholar

69. Revathi, V. and Karthik, K. 2018. Microwave Assisted CdO–ZnO–MgO Nanocomposite and its Photocatalytic and Antibacterial Studies. J. Mater. Sci. Mater. Electron. 2018, 29, 18519–18530. https://doi.org/10.1007/s10854-018-9968-1 Search in Google Scholar

70. Munawar, Z.; Ghazanfar, S.; Asif, H. M.; Khan, M. A.; Sirajuddin, M.; Tariq, M.; Shirazi, J. H.; Haider, A. Synthesis, Characterization of Ternary Metal Oxides Nanocomposite (ZnO–CdO–Pr2O3) for Photodegradation of Organic Pollutants: Methylene Blue & Rhodamine B. J. Iran. Chem. Soc. 2023, 20 (9), 2245–2256. https://doi.org/10.1007/s13738-023-02824-8.Search in Google Scholar

71. Priyadharsan, A.; Vasanthakumar, V.; Karthikeyan, S.; Raj, V.; Shanavas, S.; Anbarasan, P. M. Multi-functional Properties of Ternary CeO2/SnO2/rGO Nanocomposites: Visible Light Driven Photocatalyst and Heavy Metal Removal. J. Photochem. Photobiol., A 2017, 346, 32–45;https://doi.org/10.1016/j.jphotochem.2017.05.030 Search in Google Scholar

Received: 2024-04-22
Accepted: 2024-11-28
Published Online: 2025-03-26
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0138/html
Scroll to top button