Home Charcoal ash derived from mature-wood twigs of neem (Azadirachta indica): an economical, accessible material with multifaceted application potential
Article
Licensed
Unlicensed Requires Authentication

Charcoal ash derived from mature-wood twigs of neem (Azadirachta indica): an economical, accessible material with multifaceted application potential

  • Manoj Aravind Sankar ORCID logo EMAIL logo , Prasanna Ram ORCID logo and Renganathan Nedumaram Gopalan
Published/Copyright: April 2, 2025
Become an author with De Gruyter Brill

Abstract

In this study, discarded neem (Azadirachta indica) mature-wood twigs are charred at 473 K to yield charcoal ash. Material characterizations reveal that the charcoal ash is composed of various minerals and organic functionalities and has a flaky, macroporous surface consisting of protrusions. Elementary property analyses are performed, and neem mature-wood twig charcoal ash is compared characteristically with similar wood-derived, organic, and bottom ashes. The inherently gray color of charcoal ash (∼50 % absorbance and ∼50 % reflectance) changes to reddish gray when the ash solution is ultrasonicated and to golden yellow upon subsequent filtration; the emission peaks are spectrally identified as 706.32 and 577.26 nm, respectively. Thermal testing is conducted, and the following parameters are determined: thermal emissivity = 0.830–0.924; phase-transition temperature = 652.75 K; decomposition temperature = 886.85 K; enthalpy of fusion = 2,760.77 J g−1; enthalpy of crystallization = −3,708.41 J g−1. The electrically conductive nature of charcoal ash is demonstrated in its solution and powdered forms, with the conductivity ranging 7–10 mS m−1 and the electrical continuity being sustained over a distance of at least 4√2 cm. Hence, this study aims to provide guidance for customizing abundantly available plant waste into valuable materials for varied target applications.


Corresponding author: Manoj Aravind Sankar, Centre for Antenna and Electronic Materials, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India; Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, USA; and Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, India, E-mail:

Acknowledgments

We are grateful to Dr. Gowthaman Swaminathan (Former Director R&D), Late Dr. Rameshkumar Chidambaram (Former Director R&D), Dr. Radhakrishnan Narayanasamy (Former Laboratory In-charge, Vel Tech Technology Business Incubator Biowaste Management Laboratory), Dr. P. Chandrakumar (Dean R&D), and Dr. R. Ravikumar (Associate Dean R&D), Vel Tech Research Park, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, for providing us access to basic laboratory equipment and instrumentation. This work was performed in part (SEM, EDS, XRD, and TGA–DTG) at CSIR-Central Electrochemical Research Institute – ICP Section, Karaikudi, for which the support of Dr. P. Periasamy (Chief Scientist) and Mr. N. Karunanithi (Sr. Technical officer) is acknowledged. We are thankful to Dr. B. Vijayakumar (Associate Professor, Department of Chemistry), Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, for helping us with FTIR spectral data acquisition. We thank Dr. D. Neelamegan (Head, Centre for Biomedical Spectroscopy, Vel Tech Research Park) for granting us instrumental access to the UV–Vis and NIR spectrometers.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. All the authors have contributed equally to this work. M.A.S.: Conceptualization; Formal Analysis; Investigation; Visualization; Writing – original draft. P.R.: Supervision; Validation; Writing – review & editing. R.N.G.: Resources; Writing – review & editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The data that support the findings of this study are available from the corresponding author, M.A.S., upon reasonable request.

  8. Patents: The findings of this study have been filed as a patent (application #202441030048) in the Indian Patent Office on April 13th, 2024.

References

1. Berna, F.; Goldberg, P.; Horwitz, L. K.; Brink, J.; Holt, S.; Bamford, M.; Chazang, M. Microstratigraphic Evidence of In Situ Fire in the Acheulean Strata of Wonderwerk Cave, Northern Cape Province, South Africa. PNAS Plus 2012, 109, E1215–E1220. https://doi.org/10.1073%2Fpnas.1117620109.10.1073/pnas.1117620109Search in Google Scholar PubMed PubMed Central

2. Hawkins, L. Is Biochar the Same as Charcoal? 2020 https://medium.com/earthly-biochar/is-biochar-the-same-as-charcoal-ac5141fbcc8b (accessed-2023-06-23).Search in Google Scholar

3. Laird, D. A.; Brown, R. C.; Amonette, J. E.; Lehmann, J. Review of the Pyrolysis Platform for Coproducing Bio-Oil and Biochar. Biofuel. Bioprod. Biorefin. 2009, 3, 547–562. https://doi.org/10.1002/bbb.169.Search in Google Scholar

4. Donald, G. H.; Donald, C. H. Wood and Charcoal as Motor Fuels. Emp. For. J. 1938, 17, 70–74.Search in Google Scholar

5. Cheng, Z.; Yang, J.; Zhou, L.; Liu, Y.; Wang, Q. Characteristics of Charcoal Combustion and its Effects on Iron-Ore Sintering Performance. Appl. Energy 2016, 161, 364–374. https://doi.org/10.1016/j.apenergy.2015.09.095.Search in Google Scholar

6. Isa, S. S. M.; Ramli, M. M.; Hambali, N. A. M. A.; Kasjoo, S. R.; Isa, M. M.; Nor, N. I. M.; Khalid, N.; Ahmad, N. Adsorption Properties and Potential Applications of Bamboo Charcoal: A Review. 2nd Intern. Conf. Green Des. Manuf. 2016, 78, 01097. https://doi.org/10.1051/matecconf/20167801097.Search in Google Scholar

7. Théry-Parisot, I.; Thiébault, S.; Delannoy, J.-J.; Ferrier, C.; Feruglio, V.; Fritz, C.; Gely, B.; Guibert, P.; Monney, J.; Tosello, G.; Clottes, J.; Geneste, J.-M. Illuminating the Cave, Drawing in Black: Wood Charcoal Analysis at Chauvet-Pont d’Arc. Antiq 2018, 92, 320–333. https://doi.org/10.15184/aqy.2017.222.Search in Google Scholar

8. Šefčáková, A.; Levchenko, V. A. Prehistoric Charcoal Drawings in the Caves in the Slovak Republic, Central Europe: Successful Radiocarbon Dating by a Micro-sample 14C AMS. Quat. Intern. 2021, 572, 120–130. https://doi.org/10.1016/j.quaint.2020.09.019.Search in Google Scholar

9. Kosanke, B. J.; Kosanke, K. L.; Jennings-White, C. Pyrotechnic Spark Generation. Proc. 3rd Intern. Symp. Firew. 1996, 1, 233–268.Search in Google Scholar

10. Thakur, A.; Ganeshpurkar, A.; Jaiswal, A. Charcoal in Dentistry. In Natural Oral Care in Dental Therapy; Chauhan, D. N.; Singh, P. R.; Shah, K.; Chauhan, N. S., Eds.; Scrivener Publishing LLC: Beverley (USA), 2020, 1st ed.; pp. 197–209.10.1002/9781119618973.ch13Search in Google Scholar

11. Plants of the World Online Azadirachta indica A. Juss; Royal Botanic Gardens; n.d https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:1213180-2 (accessed-2023-06-15).Search in Google Scholar

12. Koul, O. Neem: A Global Perspective. In Neem: Today and in the New Millennium; Koul, O.; Wahab, S., Eds.; Springer Dordrecht: Berlin (Germany), 2004; pp. 1–19.10.1007/1-4020-2596-3_1Search in Google Scholar

13. Jensen, K.; Lynch, E. A.; Calcote, R.; Hotchkiss, S. C. Interpretation of Charcoal Morphotypes in Sediments from Ferry Lake, Wisconsin, USA: Do Different Plant Fuel Sources Produce Distinctive Charcoal Morphotypes? The Holocene 2007, 17, 907–915. https://doi.org/10.1177/0959683607082405.Search in Google Scholar

14. Patel, H. Batch and Continuous Fixed Bed Adsorption of Heavy Metals Removal Using Activated Charcoal from Neem (Azadirachta indica) Leaf Powder. Sci. Rep. 2020, 10, 16895. https://doi.org/10.1038/s41598-020-72583-6.Search in Google Scholar PubMed PubMed Central

15. Chukka, N. D. K. R.; Nagajothi, P. G.; Natrayan, L.; Reddy, Y. B. S.; Veeman, D.; Patil, P. P.; Thanappan, S. Investigation on Efficient Removal of Fluoride from Ground Water Using Activated Carbon Adsorbents. Adsorpt. Sci. Technol. 2022, 2022, 7948069. https://doi.org/10.1155/2022/7948069.Search in Google Scholar

16. Thangagiri, B.; Sakthivel, A.; Jeyasubramanian, K.; Seenivasan, S.; Raja, J. D.; Yun, K. Removal of Hexavalent Chromium by Biochar Derived from Azadirachta indica Leaves: Batch and Column Studies. Chemosphere 2022, 286, 131598. https://doi.org/10.1016/j.chemosphere.2021.131598.Search in Google Scholar PubMed

17. Das, R.; Mukherjee, A.; Sinha, I.; Roy, K.; Dutta, B. K. Synthesis of Potential Bio-Adsorbent from Indian Neem Leaves (Azadirachta indica) and its Optimization for Malachite Green Dye Removal from Industrial Wastes Using Response Surface Methodology: Kinetics, Isotherms and Thermodynamic Studies. Appl. Water Sci. 2020, 10, 117. https://doi.org/10.1007/s13201-020-01184-5.Search in Google Scholar

18. Saravanan, P.; Senthil Kannan, K.; Divya, R.; Vimalan, M.; Tamilselvan, S.; Sankar, D. A Perspective Approach towards Appreciable Size and Cost-Effective Solar Cell Fabrication by Synthesizing ZnO Nanoparticles from Azadirachta indica Leaves Extract Using Domestic Microwave Oven. J. Mater. Sci.: Mater. Electron. 2020, 31, 4301–4309. https://doi.org/10.1007/s10854-020-02985-9.Search in Google Scholar

19. Sundriyal, S.; Shrivastav, V.; Kaur, A.; Mansi; Deep, A.; Dhakate, S. R. Surface and Diffusion Charge Contribution Study of Neem Leaves Derived Porous Carbon Electrode for Supercapacitor Applications Using Acidic, Basic, and Neutral Electrolytes. J. Energy Storage 2021, 41, 103000. https://doi.org/10.1016/j.est.2021.103000.Search in Google Scholar

20. Ahmed, S.; Parvaz, M.; Johari, R.; Rafat, M. Studies on Activated Carbon Derived from Neem (Azadirachta indica) Bio-Waste, and its Application as Supercapacitor Electrode. Mater. Res. Exp. 2018, 5, 045601. https://doi.org/10.1088/2053-1591/aab924.Search in Google Scholar

21. Kaur, P.; Verma, G.; Sekhon, S. S. Biomass Derived Hierarchical Porous Carbon Materials as Oxygen Reduction Reaction Electrocatalysts in Fuel Cells. Prog. Mater. Sci. 2019, 102, 1–71. https://doi.org/10.1016/j.pmatsci.2018.12.002.Search in Google Scholar

22. Thiruppathi, M.; Leeladevi, K.; Ramalingan, C.; Chen, K.-C.; Nagarajan, E. R. Construction of Novel Biochar Supported Copper Tungstate Nanocomposites: A Fruitful Divergent Catalyst for Photocatalysis and Electrocatalysis. Mater. Sci. Semicond. Process. 2020, 106, 104766. https://doi.org/10.1016/j.mssp.2019.104766.Search in Google Scholar

23. Mili, M.; Jaiswal, A.; Hada, V.; Sagiri, S. S.; Pal, K.; Chowdhary, R.; Malik, R.; Gupta, R. S.; Gupta, M. K.; Chourasia, J. P.; Hashmi, S.; Rathore, S. K. S.; Srivastava, A. K.; Verma, S. Development of Graphene Quantum Dots by Valorizing the Bioresources – A Critical Review. ChemistrySelect 2021, 6, 9990–10001. https://doi.org/10.1002/slct.202102353.Search in Google Scholar

24. Prachayawarakorn, J.; Hanchana, A. Effect of Neem Wood Sawdust Content on Properties of Biodegradable Thermoplastic Acetylated Cassava Starch/Neem Wood Sawdust Composites. Starch 2017, 69, 1600113. https://doi.org/10.1002/star.201600113.Search in Google Scholar

25. Sinha, A. S. K. Neem (Azadirachta indica) as Alternative Wood Fiber Source with Environmental Advantages and Medicinal Properties for Pulp and Paper Industries, Pap. Conf. Trade Show (PaperCon ’08) 2008, 5, 3314–3326. https://imisrise.tappi.org/TAPPI/Products/08/PM/08PM09.aspx.Search in Google Scholar

26. Wittkowski, R.; Ruther, J.; Drinda, H.; Rafiei-Taghanaki, F. Formation of Smoke Flavor Compounds by Thermal Lignin Degradation. In Flavor Precursors; Teranishi, R.; Takeoka, G. R.; Güntert, M., Eds.; American Chemical Society: Washington (USA), 1992; pp. 232–243.10.1021/bk-1992-0490.ch018Search in Google Scholar

27. Dhanalakshmi, C. S.; Madhu, P. Biofuel Production of Neem Wood Bark (Azadirachta indica) through Flash Pyrolysis in a Fluidized Bed Reactor and its Chromatographic Characterization. Energy Sources, Part A 2021, 43, 428–443. https://doi.org/10.1080/15567036.2019.1624893.Search in Google Scholar

28. Naseem, K.; Imran, Q.; Ur Rehman, M. Z.; Tahir, M. H.; Najeeb, J. Adsorptive Removal of Heavy Metals and Dyes from Wastewater Using Azadirachta indica Biomass. Int. J. Environ. Sci. Technol. 2023, 20, 5799–5822. https://doi.org/10.1007/s13762-022-04389-0.Search in Google Scholar

29. Neina, D.; Faust, S.; Joergensen, R. G. Characterization of Charcoal and Firewood Ash for Use in African Peri-Urban Agriculture. Chem. Biol. Technol. Agric. 2020, 7, 5. https://doi.org/10.1186/s40538-019-0171-2.Search in Google Scholar

30. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. https://doi.org/10.1038/nmeth.2089.Search in Google Scholar PubMed PubMed Central

31. Thilagashanthi, T.; Gunasekaran, K.; Satyanarayanan, K. S. Microstructural Pore Analysis Using SEM and ImageJ on the Absorption of Treated Coconut Shell Aggregate. J. Cleaner Prod. 2021, 324, 129217. https://doi.org/10.1016/j.jclepro.2021.129217.Search in Google Scholar

32. Hojat, N.; Gentile, P.; Ferreira, A. M.; Šiller, L. Automatic Pore Size Measurements from Scanning Electron Microscopy Images of Porous Scaffolds. J. Porous Mater. 2023, 30, 93–101. https://doi.org/10.1007/s10934-022-01309-y.Search in Google Scholar

33. Transcat How to Determine the “Emissivity” of an Object; n.d https://www.transcat.com/calibration-resources/application-notes/measuring-emissivity (accessed-2024-09-18).Search in Google Scholar

34. Inagaki, M. Pores in Carbon Materials-Importance of Their Control. New Carbon Mater. 2009, 24, 193–232. https://doi.org/10.1016/S1872-5805(08)60048-7.Search in Google Scholar

35. Tong, S.; Fan, T.; Zeng, W.; Zhang, D.; Kao, C.-Y.; Liu, Y.; Min, Y.; Epstein, A. J. Formation of Tunable Three-Dimensional Networks of Graphene Hydrogel via Covalent Bond. Synth. Met. 2014, 196, 27–32. https://doi.org/10.1016/j.synthmet.2014.07.010.Search in Google Scholar

36. Merin, I.; Hadisoebroto, R.; Wijayanti, A. The Utilization of Kepok Banana (Musa parasidiaca L) Peel as Adsorption Material in Removal of Cadmium Metal (Cd) in Radiological Wastewater. AIP Conf. Proc. 2023, 2706, 020159. https://doi.org/10.1063/5.0122454.Search in Google Scholar

37. Burrage, L. J. Studies on Adsorption. Part I. Mechanism of the Activation of Charcoal. Trans. Faraday Soc. 1933, 29, 445–457. https://doi.org/10.1039/TF9332900445.Search in Google Scholar

38. Xiao, F.; Bedane, A. H.; Mallula, S.; Sasi, P. C.; Alinezhad, A.; Soli, D.; Hagen, Z. M.; Mann, M. D. Production of Granular Activated Carbon by Thermal Air Oxidation of Biomass Charcoal/Biochar for Water Treatment in Rural Communities: A Mechanistic Investigation. Chem. Eng. J. Adv. 2020, 4, 100035. https://doi.org/10.1016/j.ceja.2020.100035.Search in Google Scholar

39. Wang, Y.; Du Pasquier, A.; Li, D.; Atanassova, P.; Sawrey, S.; Oljaca, M. Electrochemical Double Layer Capacitors Containing Carbon Black Additives for Improved Capacitance and Cycle Life. Carbon 2018, 133, 1–5. https://doi.org/10.1016/j.carbon.2018.03.001.Search in Google Scholar

40. Tuas, M. A.; Masduqi, A. Treatment of Copper-Contained Jewellery Wastewater by Precipitation and Adsorption Using Rice Husk Charcoal. J. Ecol. Eng. 2019, 20, 94–103. https://doi.org/10.12911/22998993/102793.Search in Google Scholar

41. Suryandari, E. T.; Kusuma, H. H. The Synthesis of Javanese Bamboo Charcoal for Purifiying Cooking Oil. J. Phys.: Conf. Ser. 2021, 1796, 012107. https://doi.org/10.1088/1742-6596/1796/1/012107.Search in Google Scholar

42. Brito, G. M.; Cipriano, D. F.; Schettino, M. Â.Jr.; Cunha, A. G.; Coelho, E. R. C.; Freitas, J. C. C. One-step Methodology for Preparing Physically Activated Biocarbons from Agricultural Biomass Waste. J. Environ. Chem. Eng. 2019, 7, 103113. https://doi.org/10.1016/j.jece.2019.103113.Search in Google Scholar

43. Saravanan, K. R. A.; Prabu, N.; Sasidharan, M.; Maduraiveeran, G. Nitrogen-self Doped Activated Carbon Nanosheets Derived from Peanut Shells for Enhanced Hydrogen Evolution Reaction. Appl. Surf. Sci. 2019, 489, 725–733. https://doi.org/10.1016/j.apsusc.2019.06.040.Search in Google Scholar

44. Rampe, M. J.; Tiwow, V. A. Fabrication and Characterization of Activated Carbon from Charcoal Coconut Shell Minahasa, Indonesia. J. Phys.: Conf. Ser. 2018, 1028, 012033. https://doi.org/10.1088/1742-6596/1028/1/012033.Search in Google Scholar

45. Kang, K.; Qiu, L.; Sun, G.; Zhu, M.; Yang, X.; Yao, Y.; Sun, R. Codensification Technology as a Critical Strategy for Energy Recovery from Biomass and Other Resources – A Review. Renew. Sustain. Energ. Rev. 2019, 116, 109414. https://doi.org/10.1016/j.rser.2019.109414.Search in Google Scholar

46. Gu, Z.; Chen, Q.; Wang, L.; Niu, S.; Zheng, J.; Yang, M.; Yan, Y. Morphological Changes of Calcium Carbonate and Mechanical Properties of Samples during Microbially Induced Carbonate Precipitation (MICP). Mater 2022, 15, 7754. https://doi.org/10.3390/ma15217754.Search in Google Scholar PubMed PubMed Central

47. Niu, X.; Foster, E. J.; Patrick, B. O.; Rojas, O. J. Betulin Self-Assembly: From High Axial Aspect Crystals to Hedgehog Suprastructures. Adv. Funct. Mater. 2022, 32, 2206058. https://doi.org/10.1002/adfm.202206058.Search in Google Scholar

48 Nishimura, T.; Tomitori, M. Silicon Protrusions with Caps Containing Precipitates of Iron Silicides Fabricated via Liquid-phase Epitaxy under a Temperature Distribution with a Local Maximum Caused by Applied Tensile Stress. Jpn. J. Appl. Phys. 2020, 59, 085501. https://doi.org/10.35848/1347-4065/aba156.(b)Nishimura, T. In Situ Observation of Formation of Si Protrusions by Local Melting of a Si Narrow Current Path Using Resistive Heating Together with Electron Beam Irradiation. Jpn. J. Appl. Phys. 2022, 61, 065508. https://doi.org/10.35848/1347-4065/ac6d91.Search in Google Scholar

49. Sigma-Aldrich IR Spectrum Table & Chart; n.d https://www.sigmaaldrich.com/IN/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table (accessed-2023-06-10).Search in Google Scholar

50. Mabokela, T. E.; Somo, T. R.; Maponya, T. C.; Hato, M. J.; Makhado, E.; Makgopa, K.; Modibane, K. D. Dynamic Carbon Dioxide Uptake Capacity of Metal Organic Framework Using Thermogravimetrical Evaluation at Different CO2 Pressure. Mater. Lett. 2022, 317, 132086. https://doi.org/10.1016/j.matlet.2022.132086.Search in Google Scholar

51. Horikawa, Y.; Hirano, S.; Mihashi, A.; Kobayashi, Y.; Zhai, S.; Sugiyama, J. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol. 2019, 188, 1066–1076. https://doi.org/10.1007/s12010-019-02965-8.Search in Google Scholar PubMed

52. Aubineau, J.; Parat, F.; Elghali, A.; Raji, O.; Addou, A.; Bonnet, C.; Muñoz, M.; Mauguin, O.; Baron, F.; Jouti, M. B.; Yazami, O. K.; Bodinier, J.-L. Highly Variable Content of Fluorapatite-Hosted CO32− in the Upper Cretaceous/Paleogene Phosphorites (Morocco) and Implications for Paleodepositional Conditions. Chem. Geol. 2022, 597, 120818. https://doi.org/10.1016/j.chemgeo.2022.120818.Search in Google Scholar

53. Senthil, R.; Kavukcu, S. B. Efficacy of Glycoprotein-Based Nanocurcumin/Silk Fibroin Electrospun Scaffolds: Perspective for Bone Apatite Formation. Mater. Chem. Phys. 2022, 289, 126444. https://doi.org/10.1016/j.matchemphys.2022.126444.Search in Google Scholar

54. Swe, T. T.; Mohamad, H.; Shariff, K. A.; Thant, A. A. Fabrication of Sol-Gel Derived New Quaternary Silicate Bioglass S55P4. AIP Conf. Proc. 2019, 2068, 020070. https://doi.org/10.1063/1.5089369.Search in Google Scholar

55. Muniyappan, M.; Iyandurai, N. Structural Analysis of AA2024 Interaction Reinforced with Carbon Nanotubes and Silicon Nanocomposites Studied by Fourier Transform Infrared Spectroscopy. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1219, 012046. https://doi.org/10.1088/1757-899X/1219/1/012046.Search in Google Scholar

56. Arioz, E.; Arioz, O.; Kockar, O. M. Geopolymer Synthesis with Low Sodium Hydroxide Concentration. Iran J. Sci. Technol., Trans. Civ. Eng. 2020, 44, 525–533. https://doi.org/10.1007/s40996-019-00336-1.Search in Google Scholar

57. Khan, M. I.; Touheed, M.; Sajjad-ul-Hasan, M.; Siddique, M.; Rouf, S. A.; Ahmad, T.; Fatima, M.; Iqbal, M.; Almoneef, M. M.; Alwadai, N. Hydrothermal Synthesis, Characterization and Photocatalytic Activity of Mg Doped MoS2. Z. Phys. Chem. 2022, 236, 155–168. https://doi.org/10.1515/zpch-2020-1635.Search in Google Scholar

58. Smołka-Danielowska, D.; Jabłońska, M. Chemical and Mineral Composition of Ashes from Wood Biomass Combustion in Domestic Wood-fired Furnaces. Int. J. Environ. Sci. Technol. 2022, 19, 5359–5372. https://doi.org/10.1007/s13762-021-03506-9.Search in Google Scholar

59. Vance, E. D.; Mitchell, C. C. Beneficial Use of Wood Ash as an Agricultural Soil Amendment: Case Studies from the United States Forest Products Industry. In Land Application of Agricultural, Industrial, and Municipal By-products; Power, J. F.; Dick, W. A.; Kashmanian, R. M.; Sims, J. T.; Wright, R. J.; Dawson, N. D.; Bezdicek, D., Eds.; Soil Science Society of America Inc.: Madison (USA), 2000; pp. 567–582.10.2136/sssabookser6.c20Search in Google Scholar

60. Prakash, V.; Akhtar, S.; Kumar, J.; Mishra, S. K.; Pandey, R. R. Neem: The Multifaceted and Versatile Tree. In Current Trends in Medicinal Chemistry; Pandey, R. R.; Kumar, J., Eds.; Thanuj International Publishers: Namakkal (India), 2022; pp. 127–138.Search in Google Scholar

61. Cai, Y.; Chen, H.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B. Toxicity of Perfluorinated Compounds to Soil Microbial Activity: Effect of Carbon Chain Length, Functional Group and Soil Properties. Sci. Total Environ. 2019, 690, 1162–1169. https://doi.org/10.1016/j.scitotenv.2019.06.440.Search in Google Scholar PubMed

62. Hamidzadeh, Z.; Ghorbannezhad, P.; Ketabchi, M. R.; Yeganeh, B. Biomass-derived Biochar and its Application in Agriculture. Fuel 2023, 341, 127701. https://doi.org/10.1016/j.fuel.2023.127701.Search in Google Scholar

63. Senthil, C.; Lee, C. W. Biomass-derived Biochar Materials as Sustainable Energy Sources for Electrochemical Energy Storage Devices. Renew. Sustain. Energ. Rev. 2021, 137, 110464. https://doi.org/10.1016/j.rser.2020.110464.Search in Google Scholar

64. Kukachka, B. F.; McClay, T. A.; Beltranena, E. Propiedades Seleccionadas de 52 Especies de Madera del Departamento de El Peten, Guatemala. Proy. Evaluación Forestal 1968, 4, 73–89.Search in Google Scholar

65. Baxter, L. L.; Miles, T. R.; Miles, T. R.Jr.; Jenkins, B. M.; Milne, T.; Dayton, D.; Bryers, R. W.; Oden, L. L. The Behavior of Inorganic Material in Biomass-Fired Power Boilers: Field and Laboratory Experiences. Fuel Process. Technol. 1998, 54 (1–3), 47–78. https://doi.org/10.1016/S0378-3820(97)00060-X.Search in Google Scholar

66. Kleinhans, U.; Wieland, C.; Frandsen, F. J.; Spliethoff, H. Ash Formation and Deposition in Coal and Biomass Fired Combustion Systems: Progress and Challenges in the Field of Ash Particle Sticking and Rebound Behavior. Prog. Energy Combust. Sci. 2018, 68, 65–168. https://doi.org/10.1016/j.pecs.2018.02.001.Search in Google Scholar

67. Agrela, F.; Cabrera, M.; Morales, M. M.; Zamorano, M.; Alshaaer, M. Biomass Fly Ash and Biomass Bottom Ash. In New Trends in Eco-Efficient and Recycled Concrete; de Brito, J.; Agrela, F., Eds.; Woodhead Publishing: Cambridge (UK), 2019; pp. 23–58.10.1016/B978-0-08-102480-5.00002-6Search in Google Scholar

68. Sung, H.-J.; Kim, S.; Lee, I.-H.; Chang, K. J. Semimetallic Carbon Allotrope with a Topological Nodal Line in Mixed Sp2-Sp3 Bonding Networks. NPG Asia Mater. 2017, 9, e361. https://doi.org/10.1038/am.2017.26.Search in Google Scholar

69. Musić, S.; Filipović-Vinceković, N.; Sekovanić, L. Precipitation of Amorphous SiO2 Particles and Their Properties. Braz. J. Chem. Eng. 2011, 28, 89–94. https://doi.org/10.1590/S0104-66322011000100011.Search in Google Scholar

70. Luo, X.; Song, X.; Cao, Y.; Song, L.; Bu, X. Investigation of Calcium Carbonate Synthesized by Steamed Ammonia Liquid Waste without Use of Additives. RSC Adv. 2020, 10, 7976–7986. https://doi.org/10.1039/C9RA10460G.Search in Google Scholar PubMed PubMed Central

71. Popova, A. N. Crystallographic Analysis of Graphite by X-Ray Diffraction. Coke Chem. 2017, 60, 361–365. https://doi.org/10.3103/S1068364X17090058.Search in Google Scholar

72. Krishnarao, R. V.; Godkhindi, M. M.; Mukunda, P. G. I.; Chakraborty, M. Direct Pyrolysis of Raw Rice Husks for Maximization of Silicon Carbide Whisker Formation. J. Am. Chem. Soc. 1991, 74, 2869–2875. https://doi.org/10.1111/j.1151-2916.1991.tb06856.x.Search in Google Scholar

73. Arunkumar, K.; Muthukannan, M.; Kumar, A. S.; Ganesh, A. C.; Devi, R. K. Production of Eco-Friendly Geopolymer Concrete by Using Waste Wood Ash for a Sustainable Environment. Pollut 2021, 7, 993–1006. https://doi.org/10.22059/poll.2021.320857.1039.Search in Google Scholar

74. Martínez-García, R.; Jagadesh, P.; Zaid, O.; Șerbănoiu, A. A.; Fraile-Fernández, F. J.; de Prado-Gil, J.; Qaidi, S. M. A.; Grădinaru, C. M. The Present State of the Use of Waste Wood Ash as an Eco-Efficient Construction Material: A Review. Mater 2022, 15, 5349. https://doi.org/10.3390/ma15155349.Search in Google Scholar PubMed PubMed Central

75. Sangeetha, K.; Thamizhavel, A.; Girija, E. K. Effect of Gelatin on the In Situ Formation of Alginate/Hydroxyapatite Nanocomposite. Mater. Lett. 2013, 91, 27–30. https://doi.org/10.1016/j.matlet.2012.09.054.Search in Google Scholar

76. Beh, J. H.; Yew, M. K.; Yew, M. C.; Saw, L. H. Characterization and Fire Protection Properties of Rubberwood Biomass Ash Formulated Intumescent Coatings for Steel. J. Mater. Res. Technol. 2021, 14, 2096–2106. https://doi.org/10.1016/j.jmrt.2021.07.103.Search in Google Scholar

77. De la Fuente, V.; Rufo, L.; Sánchez-Gavilán, I.; Ramírez, E.; Rodríguez, N.; Amils, R. Plant Tissues and Embryos Biominerals in Sarcocornia pruinosa, a Halophyte from the Río Tinto Salt Marshes. Miner 2018, 8, 505. https://doi.org/10.3390/min8110505.Search in Google Scholar

78. Batakliev, T.; Georgiev, V.; Kalupgian, C.; Muñoz, P. A. R.; Ribeiro, H.; Fechine, G. J. M.; Andrade, R. J. E.; Ivanov, E.; Kotsilkova, R. Physico-chemical Characterization of PLA-Based Composites Holding Carbon Nanofillers. Appl. Compos. Mater. 2021, 28, 1175–1192. https://doi.org/10.1007/s10443-021-09911-0.Search in Google Scholar

79. Kun, P.; Wéber, F.; Balázsi, C. Preparation and Examination of Multilayer Graphene Nanosheets by Exfoliation of Graphite in High Efficient Attritor Mill. Cent. Eur. J. Chem. 2010, 9, 47–51. https://doi.org/10.2478/s11532-010-0137-5.Search in Google Scholar

80. Keppetipola, N. M.; Dissanayakeb, M.; Dissanayakeb, P.; Karunarathneb, B.; Dourges, M. A.; Talagaa, D.; Servanta, L.; Olivier, C.; Toupance, T.; Uchida, S.; Tennakone, K.; Kumara, G. R. A.; Cojocaru, L. Graphite-type Activated Carbon from Coconut Shell: A Natural Source for Eco-Friendly Non-volatile Storage Devices. RSC Adv. 2021, 11, 2854–2865. https://doi.org/10.1039/D0RA09182K.Search in Google Scholar PubMed PubMed Central

81. Dickinson, S. R.; McGrath, K. M. Quantitative Determination of Binary and Tertiary Calcium Carbonate Mixtures Using Powder X-Ray Diffraction. Anal 2001, 126, 1118–1121. https://doi.org/10.1039/B103004N.Search in Google Scholar PubMed

82. Hatmoko, D. R.; Ramelan, A. H.; Pranoto The Effectiveness of Zeolite/Claystone/Activated Charcoal Composite in Reducing Levels of Mercury (Hg) in the Waste Resulting from the Activities of Unlicensed Gold Mining (PETI) in Sintang. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 858, 012039. https://doi.org/10.1088/1757-899X/858/1/012039.Search in Google Scholar

83. Tsuyumoto, I. High Flame Retardancy of Amorphous Sodium Silicate on Poly(ethylene-Co-Vinyl Acetate) (EVA). Polym. Bull. 2018, 75, 4967–4976. https://doi.org/10.1007/s00289-018-2311-4.Search in Google Scholar

84. Johari, M. M.; Zeyad, A.; Hashim, S. S. Pozzolanic Characteristics of Palm Oil Waste Ash (POWA) and Treated Palm Oil Fuel Ash (TPOFA). In Advances in Civil Engineering and Building Materials; Chang, S.-Y.; Al Bahar, S. K.; Zhao, J., Eds.; CRC Press: Florida (USA), 2012; pp. 145–150.10.1201/b13165-31Search in Google Scholar

85. Aisyah, A. N.; Fikri, A. A.; Alfarisa, S.; Purwanto, A. Effect of Frequency and Number of Piezoelectric Probes in Sonication-Assisted Exfoliation of Graphite Layers into Graphene Oxide. J. Phys. Sci. 2018, 29 (2), 121–135. https://doi.org/10.21315/jps2018.29.2.8.Search in Google Scholar

86. Hong, Q.; Chen, S. Facile One-step Fabrication of Phthalocyanine–Graphene–Bacterial–Cellulose Nanocomposite with Superior Catalytic Performance. Nanomater 2020, 10 (9), 1673. https://doi.org/10.3390/nano10091673.Search in Google Scholar PubMed PubMed Central

87. Flores, E. M.; Cravotto, G.; Bizzi, C. A.; Santos, D.; Iop, G. D. Ultrasound-Assisted Biomass Valorization to Industrial Interesting Products: State-Of-The-Art, Perspectives and Challenges. Ultrason. Sonochem. 2021, 72, 105455. https://doi.org/10.1016/j.ultsonch.2020.105455.Search in Google Scholar PubMed PubMed Central

88. Zhao, X.; Oyedeji, O.; Webb, E.; Wasti, S.; Bhagia, S.; Hinton, H.; Li, K.; Kim, K.; Wang, Y.; Zhu, H.; Vaidya, U.; Labbé, N.; Tekinalp, H.; Gallego, N. C.; Pu, Y.; Ragauskas, A. J.; Ozcan, S. Impact of Biomass Ash Content on Biocomposite Properties. Compos. C: Open Access 2022, 9, 100319. https://doi.org/10.1016/j.jcomc.2022.100319.Search in Google Scholar

89. Fan, C.; Chen, C.; Wang, J.; Fu, X.; Ren, Z.; Qian, G.; Wang, Z. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Sci. Rep. 2015, 5 (1), 11712. https://doi.org/10.1038/srep11712.Search in Google Scholar PubMed PubMed Central

90. Ong, V. Z.; Wu, T. Y.; Chu, K. K. L.; Sun, W. Y.; Shak, K. P. Y. A Combined Pretreatment with Ultrasound-Assisted Alkaline Solution and Aqueous Deep Eutectic Solvent for Enhancing Delignification and Enzymatic Hydrolysis from Oil Palm Fronds. Ind. Crops Prod. 2021, 160, 112974. https://doi.org/10.1016/j.indcrop.2020.112974.Search in Google Scholar

91. Marín, R. R.; Babick, F.; Stintz, M. Ultrasonic Dispersion of Nanostructured Materials with Probe Sonication − Practical Aspects of Sample Preparation. Powder Technol. 2017, 318, 451–458. https://doi.org/10.1016/j.powtec.2017.05.049.Search in Google Scholar

92. Kefeni, K. K.; Mamba, B. B. Evaluation of Charcoal Ash Nanoparticles Pollutant Removal Capacity from Acid Mine Drainage Rich in Iron and Sulfate. J. Cleaner Prod. 2020, 251, 119720. https://doi.org/10.1016/j.jclepro.2019.119720.Search in Google Scholar

93. Dager, A.; Uchida, T.; Maekawa, T.; Tachibana, M. Synthesis and Characterization of Mono-Disperse Carbon Quantum Dots from Fennel Seeds: Photoluminescence Analysis Using Machine Learning. Sci. Rep. 2019, 9 (1), 14004. https://doi.org/10.1038/s41598-019-50397-5.Search in Google Scholar PubMed PubMed Central

94. Stachowska, J. D.; Murphy, A.; Mellor, C.; Fernandes, D.; Gibbons, E. N.; Krysmann, M. J.; Kelarakis, A.; Burgaz, E.; Moore, J.; Yeates, S. G. A Rich Gallery of Carbon Dots Based Photoluminescent Suspensions and Powders Derived by Citric Acid/Urea. Sci. Rep. 2021, 11 (1), 10554. https://doi.org/10.1038/s41598-021-89984-w.Search in Google Scholar PubMed PubMed Central

95. John, V. L.; Joy, F.; Kollannoor, A. J.; Joseph, K.; Nair, Y.; Vinod, T. P. Amine Functionalized Carbon Quantum Dots from Paper Precursors for Selective Binding and Fluorescent Labelling Applications. J. Colloid Interface Sci. 2022, 617, 730–744. https://doi.org/10.1016/j.jcis.2022.03.070.Search in Google Scholar PubMed

96. Sunil, K. C.; Suvarna, S.; Nairy, R. K.; Chethan, G.; Mustak, M. S.; Yerol, N. Facile, Cost-Effective and Eco-Friendly Synthesis of Carbonyl-Rich Partially Reduced Graphene Oxide Using Glucose as a Sole Precursor. SN Appl. Sci. 2020, 2, 1–8. https://doi.org/10.1007/s42452-020-3134-0.Search in Google Scholar

97. Keskin, S. Y.; Avcı, A.; Kurnia, H. F. F. Analyses of Phytochemical Compounds in the Flowers and Leaves of Spiraea japonica Var. Fortunei Using UV-VIS, FTIR, and LC-MS Techniques. Heliyon 2024, 10 (3), e25496. https://doi.org/10.1016/j.heliyon.2024.e25496.Search in Google Scholar PubMed PubMed Central

98. Li, X.; Sun, C.; Zhou, B.; He, Y. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Sci. Rep. 2015, 5 (1), 17210. https://doi.org/10.1038/srep17210.Search in Google Scholar PubMed PubMed Central

99. Metrohm Pulp and Paper QC and Product Screening with NIR Spectroscopy, 2024. https://www.metrohm.com/en_in/discover/blog/2024/nirs-qc-pulp-paper.html (accessed-2024-09-22).Search in Google Scholar

100. Nashizawa, H.; Kubo, H.; Ueno, N. Image Processing Method, Image Processing Apparatus, and Storage Medium. 2007. US 7 796 298 (granted 2010-09-14), Canon Kabushiki Kaisha (applicant). https://patents.google.com/patent/US20070285692A1.Search in Google Scholar

101. Flowers, P.; Theopold, K.; Langley, R.; Neth, E. J.; Robinson, W. R. Transition Metals and Coordination Chemistry. In Chemistry: Atoms First 2e; OpenStax: Houston (USA), 2019; pp. 939–980. https://assets.openstax.org/oscms-prodcms/media/documents/ChemistryAtomsFirst2e-WEB.pdf.Search in Google Scholar

102. UCLA – Chemistry and Biochemistry Theory of Ultraviolet-Visible (UV-Vis) Spectroscopy. n.d https://www.chem.ucla.edu/∼bacher/UV-vis/uv_vis_tetracyclone.html (accessed-2024-10-12).Search in Google Scholar

103. Zhang, J.; Tian, Z.; Ji, X. X.; Zhang, F. Light-Colored Lignin Extraction by Ultrafiltration Membrane Fractionation for Lignin Nanoparticles Preparation as UV-Blocking Sunscreen. Int. J. Biol. Macromol. 2023, 231, 123244. https://doi.org/10.1016/j.ijbiomac.2023.123244.Search in Google Scholar PubMed

104. Girard, V.; Fragnières, L.; Chapuis, H.; Brosse, N.; Marchal-Heussler, L.; Canilho, N.; Parant, S.; Ziegler-Devin, I. The Impact of Lignin Biopolymer Sources, Isolation, and Size Reduction from the Macro-To Nanoscale on the Performances of Next-Generation Sunscreen. Polym 2024, 16 (13), 1901. https://doi.org/10.3390/polym16131901.Search in Google Scholar PubMed PubMed Central

105. Zaror, C. A. Z. Studies of the Pyrolysis of Wood at Low Temperatures. Ph.D. Thesis, Imperial College London, London, UK, 1982 https://spiral.imperial.ac.uk/bitstream/10044/1/8457/1/Claudio_Alfredo_Zaror_Zaror-1983-PhD-Thesis.pdf (accessed-2024-09-24).Search in Google Scholar

106. Gupta, M.; Yang, J.; Roy, C. Specific Heat and Thermal Conductivity of Softwood Bark and Softwood Char Particles. Fuel 2003, 82 (8), 919–927. https://doi.org/10.1016/S0016-2361(02)00398-8.Search in Google Scholar

107. Salazar, R. K.; Laurente, C. L. B. Emissivity of “Grey” Bodies, Surface Roughness and Other Measures. Recoletos Multidiscip. Res. J. 2014, 2 (2), 1–13. https://doi.org/10.32871/rmrj1402.02.14.Search in Google Scholar

108. Frodella, W.; Lazzeri, G.; Moretti, S.; Keizer, J.; Verheijen, F. G. Applying Infrared Thermography to Soil Surface Temperature Monitoring: Case Study of a High-Resolution 48 H Survey in a Vineyard (Anadia, Portugal). Sensors 2020, 20 (9), 2444. https://doi.org/10.3390/s20092444.Search in Google Scholar PubMed PubMed Central

109. Jones, J. M.; Mason, P. E.; Williams, A. A Compilation of Data on the Radiant Emissivity of Some Materials at High Temperatures. J. Energy Inst. 2019, 92 (3), 523–534. https://doi.org/10.1016/j.joei.2018.04.006.Search in Google Scholar

110. Greffrath, F.; Gorewoda, J.; Schiemann, M.; Scherer, V. Influence of Chemical Composition and Physical Structure on Normal Radiant Emittance Characteristics of Ash Deposits. Fuel 2014, 134, 307–314. https://doi.org/10.1016/j.fuel.2014.05.047.Search in Google Scholar

111. Mulcahy, M. F. R.; Boow, J.; Goard, P. R. C. Fireside Deposits and Their Effect on Heat Transfer in a Pulverized Fuel-Fired Boiler: Part III. In The Influence of the Physical Characteristics of the Deposit on its Radiant Emittance and Effective Thermal Conductance; Institute of Fuel, Vol. 42: London (UK), 1969; pp. 412–419. https://www.google.co.in/books/edition/_/Kns7AAAAMAAJ.Search in Google Scholar

112. Schiemann, M.; Gronarz, T.; Graeser, P.; Gorewoda, J.; Kneer, R.; Scherer, V. A Correlation between Char Emissivity and Temperature. Fuel 2019, 256, 115889. https://doi.org/10.1016/j.fuel.2019.115889.Search in Google Scholar

113. Zheng, S.; Yang, Y.; Li, X.; Liu, H.; Yan, W.; Sui, R.; Lu, Q. Temperature and Emissivity Measurements from Combustion of Pine Wood, Rice Husk and Fir Wood Using Flame Emission Spectrum. Fuel Process. Technol. 2020, 204, 106423. https://doi.org/10.1016/j.fuproc.2020.106423.Search in Google Scholar

114. Nascimento, L. C.; Junior, G. B.; de Castro Xavier, G.; Monteiro, S. N.; Vieira, C. M. F.; de Azevedo, A. R. G.; Alexandre, J. Use of Wood Bottom Ash in Cementitious Materials: A Review. J. Mater. Res. Technol. 2023, 23, 4226–4243. https://doi.org/10.1016/j.jmrt.2023.02.071.Search in Google Scholar

115. Eliche-Quesada, D.; Felipe-Sesé, M. A.; López-Pérez, J. A.; Infantes-Molina, A. Characterization and Evaluation of Rice Husk Ash and Wood Ash in Sustainable Clay Matrix Bricks. Ceram. Int. 2017, 43 (1), 463–475. https://doi.org/10.1016/j.ceramint.2016.09.181.Search in Google Scholar

116. Lopinti, K.; Sharma, M.; Chakradhar, M.; Arora, A. K.; Kagdiyal, V.; Majumdar, S. K. Ash Catalyzed Synthesis of Long-Chain Dialkyl Carbonates through Carbonyl Exchange Reaction. Catal. Lett. 2020, 150, 1163–1175. https://doi.org/10.1007/s10562-019-03004-1.Search in Google Scholar

117. Vassilev, S. V.; Vassileva, C. G.; Petrova, N. L. Thermal Behaviour of Biomass Ashes in Air and Inert Atmosphere with Respect to Their Decarbonation. Fuel 2022, 314, 122766. https://doi.org/10.1016/j.fuel.2021.122766.Search in Google Scholar

118. Viola, V.; Catauro, M.; D’Amore, A.; Perumal, P. Assessing the Carbonation Potential of Wood Ash for CO2 Sequestration. Low-Carbon Mater. Green Constr. 2024, 2 (1), 12. https://doi.org/10.1007/s44242-024-00043-9.Search in Google Scholar

119. Vassilev, S. V.; Baxter, D.; Vassileva, C. G. An Overview of the Behaviour of Biomass during Combustion: Part I. Phase-Mineral Transformations of Organic and Inorganic Matter. Fuel 2013, 112, 391–449. https://doi.org/10.1016/j.fuel.2013.05.043.Search in Google Scholar

120. Kalembkiewicz, J.; Galas, D.; Sitarz-Palczak, E. The Physicochemical Properties and Composition of Biomass Ash and Evaluating Directions of its Applications. Pol. J. Environ. Stud. 2018, 27 (6), 2593–2603. https://doi.org/10.15244/pjoes/80870.Search in Google Scholar

121. Kaewpruk, C.; Boopasiri, S.; Poonsawat, C.; Sae‐Oui, P.; Siriwong, C. Utilization of Sawdust and Wood Ash as a Filler in Natural Rubber Composites. ChemistrySelect 2021, 6 (3), 264–272. https://doi.org/10.1002/slct.202004109.Search in Google Scholar

122. Vassilev, S. V.; Vassileva, C. G.; Petrova, N. L. Mineral Carbonation of Biomass Ashes in Relation to Their CO2 Capture and Storage Potential. ACS Omega 2021, 6 (22), 14598–14611. https://doi.org/10.1021/acsomega.1c01730.Search in Google Scholar PubMed PubMed Central

123. Miltojević, A.; Zoraja, B.; Raos, M.; Krstić, I. Application of Thermogravimetry for Determination of Carbon Content in Biomass Ash as an Indicator of the Efficiency of the Combustion Process. Teh. Vjesn. – Sveucil. Osijeku 2021, 28 (5), 1762–1768. https://doi.org/10.17559/TV-20200508110940.Search in Google Scholar

124. Bouzidi, L.; Boodhoo, M.; Humphrey, K. L.; Narine, S. S. Use of First and Second Derivatives to Accurately Determine Key Parameters of DSC Thermographs in Lipid Crystallization Studies. Thermochim. Acta 2005, 439 (1–2), 94–102. https://doi.org/10.1016/j.tca.2005.09.013.Search in Google Scholar

125. Boguta, P.; Sokołowska, Z.; Skic, K. Use of Thermal Analysis Coupled with Differential Scanning Calorimetry, Quadrupole Mass Spectrometry and Infrared Spectroscopy (TG-DSC-QMS-FTIR) to Monitor Chemical Properties and Thermal Stability of Fulvic and Humic Acids. PLoS One 2017, 12 (12), e0189653. https://doi.org/10.1371/journal.pone.0189653.Search in Google Scholar PubMed PubMed Central

126. Abd El-Naser, A.; Abdel-Khalek, E. K.; Nabhan, E.; Rayan, D. A.; Gaafar, M. S.; Abd El-Aal, N. S. Study the Influence of Oxygen-Deficient (δ= 0.135) in SrFeO3-δ Nanoparticles Perovskite on Structural, Electrical and Magnetic Properties. Philos. Mag. 2021, 101 (6), 710–728. https://doi.org/10.1080/14786435.2020.1862427.Search in Google Scholar

127. Bernardino, C. A.; Mahler, C. F.; Veloso, M. C.; Romeiro, G. A. Preparation of Biochar from Sugarcane By-Product Filter Mud by Slow Pyrolysis and its Use like Adsorbent. Waste Biomass Valorization 2017, 8, 2511–2521. https://doi.org/10.1007/s12649-016-9728-5.Search in Google Scholar

128. Magdziarz, A.; Wilk, M.; Wądrzyk, M. Pyrolysis of Hydrochar Derived from Biomass–Experimental Investigation. Fuel 2020, 267, 117246. https://doi.org/10.1016/j.fuel.2020.117246.Search in Google Scholar

129. Burachevskaya, M.; Minkina, T.; Bauer, T.; Lobzenko, I.; Fedorenko, A.; Mazarji, M.; Sushkova, S.; Mandzhieva, S.; Nazarenko, A.; Butova, V.; Wong, M. H.; Rajput, V. D. Fabrication of Biochar Derived from Different Types of Feedstocks as an Efficient Adsorbent for Soil Heavy Metal Removal. Sci. Rep. 2023, 13 (1), 2020. https://doi.org/10.1038/s41598-023-27638-9.Search in Google Scholar PubMed PubMed Central

130. Buzarovska, A.; Bogoeva, G. G.; Grozdanov, A.; Avella, M.; Gentile, G.; Errico, M. Potential Use of Rice Straw as Filler in Eco-Composite Materials. Aust. J. Crop Sci. 2008, 1 (2), 37–42.Search in Google Scholar

131. Said, N.; Abdel daiem, M. M.; García-Maraver, A.; Zamorano, M. Reduction of Ash Sintering Precursor Components in Rice Straw by Water Washing. Bioresour 2014, 9 (4), 6756–6764. https://doi.org/10.15376/biores.9.4.6756-6764.Search in Google Scholar

132. Zhou, M.; Ge, X. Preparation and Characterization of Foamed Ceramics from Coal Bottom Ash for Construction Insulation Materials. J. Ceram. Soc. Jpn. 2023, 131 (3), 49–56. https://doi.org/10.2109/jcersj2.22138.Search in Google Scholar

133. Rabelo Monich, P.; Dogrul, F.; Lucas, H.; Friedrich, B.; Bernardo, E. Strong Porous Glass-Ceramics from Alkali Activation and Sinter-Crystallization of Vitrified MSWI Bottom Ash. Detritus 2019, 8, 101–108. https://doi.org/10.31025/2611-4135/2019.13881.Search in Google Scholar

134. Grafmüller, J.; Böhm, A.; Zhuang, Y.; Spahr, S.; Müller, P.; Otto, T. N.; Bucheli, T. D.; Leifeld, J.; Giger, R.; Tobler, M.; Schmidt, H. P.; Dahmen, N.; Hagemann, N. Wood Ash as an Additive in Biomass Pyrolysis: Effects on Biochar Yield, Properties, and Agricultural Performance. ACS Sustain. Chem. Eng. 2022, 10 (8), 2720–2729. https://doi.org/10.1021/acssuschemeng.1c07694.Search in Google Scholar

135. Clapham, W. M.; Zibilske, L. M. Wood Ash as a Liming Amendment. Commun. Soil Sci. Plant Anal. 1992, 23 (11–12), 1209–1227. https://doi.org/10.1080/00103629209368661.Search in Google Scholar

136. Bang-Andreasen, T.; Nielsen, J. T.; Voriskova, J.; Heise, J.; Rønn, R.; Kjøller, R.; Hansen, H. C.; Jacobsen, C. S. Wood Ash Induced pH Changes Strongly Affect Soil Bacterial Numbers and Community Composition. Front. Microbiol. 2017, 8, 1400. https://doi.org/10.3389/fmicb.2017.01400.Search in Google Scholar PubMed PubMed Central

137. Wahba, M.; Abdel-Salam, M.; Nayel, M.; Ziedan, H. A. Use of Waste Activated Carbon and Wood Ash Mixture as an Electrical Grounding Enhancement Material. Int. J. Emerg. Electr. Power Syst. 2024. 25 (6), 843863. https://doi.org/10.1515/ijeeps-2023-0120.Search in Google Scholar

138. Kongnine, D. M.; Kpelou, P.; Attah, N. G.; Kombate, S.; Mouzou, E.; Djeteli, G.; Napo, K. Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells. Int. J. Renew. Energy Dev. 2020, 9 (1), 29–35. https://doi.org/10.14710/ijred.9.1.29-35.Search in Google Scholar

139. Kanu, M. O.; Joseph, G. W.; George, I. Measurement of Physicochemical Properties, Electrical and Thermal Conductivity of Wood Ash for Effective Soil Amendment. Indones. J. Appl. Phys. 2021, 11 (2), 176–188. https://doi.org/10.13057/ijap.v11i2.47345.Search in Google Scholar

140. Johnson, R. L.; Kuzub, R. E.; Liem, A. J.; Ronden, C. P. Method of Treatment of Wood Ash Residue. US 7658780 (granted 2010-02-09), Alberta Innovates; Biomass Technologies Inc.; Innotech Alberta Inc. (applicants), 2006. https://patents.google.com/patent/US7658780B2.Search in Google Scholar

141. Usevičiūtė, L.; Baltrėnaitė-Gedienė, E. Dependence of Pyrolysis Temperature and Lignocellulosic Physical-Chemical Properties of Biochar on its Wettability. Biomass Convers. Biorefinery 2021, 11 (6), 2775–2793. https://doi.org/10.1007/s13399-020-00711-3.Search in Google Scholar

142. Ahmad, L. Testing of Structural and Electrical Properties of Silicon Dioxide and Silicon from Rice Husk. Master Thesis, Institut Pertanian Bogor, Bogor, Indonesia, 2012. https://repository.ipb.ac.id/handle/123456789/64044 (accessed-2024-09-29).Search in Google Scholar

143. Putranto, A. W.; Abida, S. H.; Sholeh, A. B.; Azfa, H. T. The Potential of Rice Husk Ash for Silica Synthesis as a Semiconductor Material for Monocrystalline Solar Cell: A Review. IOP Conf. Ser.: Earth Environ. Sci. 2021, 733 (1), 012029. https://doi.org/10.1088/1755-1315/733/1/012029.Search in Google Scholar

144. Haegel, F.-H.; Zimmermann, E.; Jablonowski, N. D.; Esser, O.; Huisman, J. A.; Vereecken, H. Application of Spectral Induced Polarization and Electrical Impedance Tomography on Mixtures of Biochars and Active Carbons with Sand. In 25th Symposium on the Application of Geophpysics to Engineering & Environmental Problems; Environmental and Engineering Geophysical Society: Denver (USA), 2012; pp. 586–597.10.4133/1.4721883Search in Google Scholar

145. Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of Feedstock and Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. PLoS One 2014, 9 (12), e113888. https://doi.org/10.1371/journal.pone.0113888.Search in Google Scholar PubMed PubMed Central

146. Šulc, R.; Šídlová, M.; Formáček, P.; Snop, R.; Škvára, F.; Polonská, A. A Study of Physicochemical Properties of Stockpile and Ponded Coal Ash. Mater 2022, 15 (10), 3653. https://doi.org/10.3390/ma15103653.Search in Google Scholar PubMed PubMed Central

147. Villar-Cociña, E.; Valencia-Morales, E.; Gonzalez-Rodrıguez, R.; Hernandez-Ruız, J. Kinetics of the Pozzolanic Reaction between Lime and Sugar Cane Straw Ash by Electrical Conductivity Measurement: A Kinetic–Diffusive Model. Cem. Concr. Res. 2003, 33 (4), 517–524. https://doi.org/10.1016/S0008-8846(02)00998-5.Search in Google Scholar

148. Gorgolewski, A.; Caspersen, J.; Hazlett, P.; Jones, T.; Tran, H.; Basiliko, N. Responses of Eastern Red-Backed Salamander (Plethodon Cinereus) Abundance 1 Year after Application of Wood Ash in a Northern Hardwood Forest. Can. J. For. Res. 2016, 46 (3), 402–409. https://doi.org/10.1139/cjfr-2015-0230.Search in Google Scholar

149. An, J. Y.; Park, B. B. Effects of Wood Ash and N Fertilization on Soil Chemical Properties and Growth of Zelkova serrata across Soil Types. Sci. Rep. 2021, 11 (1), 14489. https://doi.org/10.1038/s41598-021-93805-5.Search in Google Scholar PubMed PubMed Central

150. Feng, L.; Gao, Z.; Hu, T.; He, S.; Liu, Y.; Jiang, J.; Zhao, Q.; Wei, L. Performance and Mechanisms of Biochar-Based Materials Additive in Constructed Wetlands for Enhancing Wastewater Treatment Efficiency: A Review. Chem. Eng. J. 2023, 471, 144772. https://doi.org/10.1016/j.cej.2023.144772.Search in Google Scholar

151. Sotannde, O. A.; Oluyege, A. O.; Abah, G. B. Physical and Combustion Properties of Charcoal Briquettes from Neem Wood Residues. Int. Agrophys. 2010, 24, 189–194.Search in Google Scholar

152. Lubwama, M.; Yiga, V. A.; Muhairwe, F.; Kihedu, J. Physical and Combustion Properties of Agricultural Residue Bio-Char Bio-Composite Briquettes as Sustainable Domestic Energy Sources. Renew. Energy 2020, 148, 1002–1016. https://doi.org/10.1016/j.renene.2019.10.085.Search in Google Scholar

153. Briens, C.; Berruti, F.; Ferrante, L. Method for Separating Biochar from Wood Ash. CA 2 676 514 A1 (Dead), Wood Ash Industries Inc. (applicant), 2009. https://patents.google.com/patent/CA2676514A1.Search in Google Scholar

154. Fadil-Djenabou, S.; Ndjigui, P. D.; Bukalo, N.; Ekosse, G. I. Effect of the Incorporation of Neem (Azadirachta indica) Wood Ash in Kodeck Ceramic Materials for the Manufacture of Fired Bricks (Far-North Cameroon). Heliyon 2023, 9, e14335. https://doi.org/10.1016/j.heliyon.2023.e14335.Search in Google Scholar PubMed PubMed Central

155. Adlak, K.; Chandra, R.; Vijay, V. K.; Pant, K. K. Physicochemical Activation and Palletisation of Azadirachta indica Wood Carbons for Increased Biomethane Adsorbed Energy Storage. J. Anal. Appl. Pyrolysis 2021, 155, 105102. https://doi.org/10.1016/j.jaap.2021.105102.Search in Google Scholar

156. Boraah, N.; Chakma, S.; Kaushal, P. Optimum Features of Wood-based Biochars: A Characterization Study. J. Environ. Chem. Eng. 2023, 11, 109976. https://doi.org/10.1016/j.jece.2023.109976.Search in Google Scholar

157. Kim, D.; Kim, M.-J. Calcium Extraction from Paper Sludge Ash Using Various Solvents to Store Carbon Dioxide. KSCE J. Civ. Eng. 2018, 22, 4799–4805. https://doi.org/10.1007/s12205-017-0819-z.Search in Google Scholar

158. Hanein, T.; Simoni, M.; Woo, C. L.; Provis, J. L.; Kinoshita, H. Decarbonisation of Calcium Carbonate at Atmospheric Temperatures and Pressures, with Simultaneous CO2 Capture, through Production of Sodium Carbonate. Energy Environ. Sci. 2021, 14, 6595–6604. https://doi.org/10.1039/D1EE02637B.Search in Google Scholar

159. Rohaeti, E.; Hikmawati, I. Production of Semiconductor Materials Silicon from Silica Rice Husk Waste as Alternative Silicon Sources. In Mater. Sci. Technol. Conf.; Batan Puspiptek: Serpong, Indonesia, 2010; pp. 265–272. https://www.researchgate.net/publication/294086109_PRODUCTION_OF_SEMICONDUCTOR_MATERIALS_SILICON_FROM_SILICA_RICE_HUSK_WASTE_AS_ALTERNATIVE_SILICON_SOURCES.Search in Google Scholar

160. Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon Quantum Dots from Natural Resource: A Review. Mater. Today Chem. 2018, 8, 96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.Search in Google Scholar

Received: 2024-05-24
Accepted: 2024-11-21
Published Online: 2025-04-02
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0171/html
Scroll to top button