Eco-friendly synthesis of Cr2O3 nanoparticles with antioxidant, antidiabetic, and antibacterial activities
-
Anum Sehar
, Raja Adil Sarfraz
, Yusra Arooj
, Aqsa Nawaz
, Muhammad Sajid
and M. Hisham Alnasir
Abstract
Metal nanoparticles synthesized by the green method show remarkably different properties from bulk materials due to their size, especially in biological applications. The study’s objective is to lessen the adverse effects of synthesis processes, the chemicals they use, and the derivative substances that come from them. One practical approach in green nanotechnology is the use of various biomaterials for the synthesis of nanoparticles. In the present study, chromium nanoparticles were fabricated using Fagonia indica (LEFI) leaf extract as a reducing agent. This technique produced 46 nm-sized nanoparticles that are not only highly stable but also hold promise for a range of applications. The synthesized nanoparticles were characterized by X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and ultraviolet–visible spectroscopy. An alpha-amylase assay was used to determine the antidiabetic potential of the nanoparticles. The antioxidant activity of plant extract and chromium nanoparticles was evaluated using 2,2-Diphenyl-1-picrylhydrazyl scavenging activity. The agar diffusion method was used to test how well chromium nanoparticles killed Staphylococcus aureus and Escherichia coli. The study’s findings indicate that Cr2O3 nanoparticles have potential as physiologically active agents for bio-medicinal uses, providing reassurance for their future use.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All the authors contributed equally to the current research. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: Not applicable.
-
Data availability: None declared.
References
1. Zhang, L.; Shi, H.; Tan, X.; Jiang, Z.; Wang, P.; Qin, J. Front. Chem. 2022, 10, 898324; https://doi.org/10.3389/fchem.2022.898324.Search in Google Scholar PubMed PubMed Central
2. Shan, Z.; Yang, Y.; Shi, H.; Zhu, J.; Tan, X.; Luan, Y.; Jiang, Z.; Wang, P.; Qin, J. Front. Chem. 2021, 9, 755836. https://doi.org/10.3389/fchem.2021.755836.Search in Google Scholar PubMed PubMed Central
3. Li, H.; Zhou, Y.; Liao, L.; Tan, H.; Li, Y.; Li, Z.; Zhou, B.; Bao, M.; He, B. Front. Pharmacol 2023, 13, 1022567. https://doi.org/10.3389/fphar.2022.1022567.Search in Google Scholar PubMed PubMed Central
4. Tang, J.; Li, J.; Li, G.; Zhang, H.; Wang, L.; Li, D.; Ding, J. Int. J. Nanomed. 2017, 6687–6704. https://doi.org/10.2147/IJN.S140569.Search in Google Scholar PubMed PubMed Central
5. Valko, M.; Morris, H.; Cronin, M. Curr. Med. Chem. 2005, 12, 1161–1208. https://doi.org/10.2174/0929867053764635.Search in Google Scholar PubMed
6. Lushchak, V. I.. Aquatic Toxicology Research Focus; Nova Science Publishers Inc.: Hauppaug, NY, USA, 2008; pp. 1–29.Search in Google Scholar
7. Piotrowska, A.; Mlyniec, K.; Siwek, A.; Dybala, M.; Opoka, W.; Poleszak, E.; Nowak, G. Pharmacol. Rep. 2008, 60, 991.Search in Google Scholar
8. Gibot, P.; Vidal, L. J. Eur. Ceram. Soc. 2010, 30, 911–915. https://doi.org/10.1016/j.jeurceramsoc.2009.09.019.Search in Google Scholar
9. Khan, S. A.; Shahid, S.; Hanif, S.; Almoallim, H. S.; Alharbi, S. A.; Sellami, H. Int. J. Mol. Sci. 2021, 22, 502. https://doi.org/10.3390/ijms22020502.Search in Google Scholar PubMed PubMed Central
10. Iqbal, J.; Abbasi, B. A.; Munir, A.; Uddin, S.; Kanwal, S.; Mahmood, T. Microsc. Res. Tech. 2020, 83, 706–719. https://doi.org/10.1002/jemt.23460.Search in Google Scholar PubMed
11. Ishak, N. M.; Kamarudin, S.; Timmiati, S. Mater. Res. Exp. 2019, 6, 112004; https://doi.org/10.1088/2053-1591/ab4458.Search in Google Scholar
12. Bhattarai, B.; Zaker, Y.; Bigioni, T. P. Curr. Opin. Green Sustain. Chem. 2018, 12, 91–100. https://doi.org/10.1016/j.cogsc.2018.06.007.Search in Google Scholar
13. Mohammadzadeh, V.; Barani, M.; Amiri, M. S.; Yazdi, M. E. T.; Hassanisaadi, M.; Rahdar, A.; Varma, R. S., Sustain. Chem. Pharm. 2022, 25, 100606. https://doi.org/10.1016/j.scp.2022.100606.Search in Google Scholar
14. Otho, A. A.; Memon, R. A.; Abro, S. A.; Memon, A. A. Biol. Trace Elem. Res. 2021, 1-16. https://doi.org/10.1007/s12011-021-02873-1.Search in Google Scholar PubMed
15. Shehab, N. G.; Abu-Gharbieh, E.; Bayoumi, F. A. BMC Complement. Altern. Med. 2015, 15, 1–12. https://doi.org/10.1186/s12906-015-0919-6.Search in Google Scholar PubMed PubMed Central
16. Singh, J.; Dutta, T.; Kim, K. H.; Rawat, M.; Samddar, P.; Kumar, P. J. Nanobiotechnology. 2018, 16, 1–24. https://doi.org/10.1186/s12951-018-0408-4.Search in Google Scholar PubMed PubMed Central
17. Ullah, I.; Shinwari, Z. K.; Khalil, A. T. Pak. J. Bot. 2017, 49, 1561–1568. http://www.pakbs.org/pjbot/papers/1502354768.pdf.Search in Google Scholar
18. Shabbir, A.; Shahzad, M.; Masci, P.; Gobe, G. C. J. Ethnopharmacol. 2014, 157, 222–227. https://doi.org/10.1016/j.jep.2014.09.039.Search in Google Scholar PubMed
19. Arshad, M.; Akbar, G.; Rashid, S. Hamdard Medicus (Pakistan), 2002. https://agris.fao.org/search/en/providers/122650/records/647240e508fd68d546002b39.Search in Google Scholar
20. Chen, J.; Xu, Y.; Wei, G.; Liao, S.; Zhang, Y.; Huang, W.; Yuan, L.; Wang, Y. Phytochemistry 2015, 116, 180–187. https://doi.org/10.1016/j.phytochem.2015.04.005.Search in Google Scholar PubMed
21. Yi-Wen, Z.; Mei-Hua, B.; Xiao-Ya, L.; Yu, C.; Jing, Y.; Hong-Hao, Z. Biol. Pharm. Bull. 2018, 41, 707–712. https://doi.org/10.1248/bpb.b17-00882.Search in Google Scholar PubMed
22. Ncube, B.; Finnie, J.; Van Staden, J. S. Afr. J. Bot. 2012, 82, 11–20. https://doi.org/10.1016/j.sajb.2012.05.009.Search in Google Scholar
23. Shen, J.; Song, Z.; Qian, X.; Yang, F.; Kong, F. BioResources 2010, 5, 1328–1331; https://doi.org/10.15376/biores.5.3.1328-1331. https://bioresources.cnr.ncsu.edu/BioRes_05/BioRes_05_2_0510_Shen_SQLY_Editorial_Filler_Eng_Fiber_Eng_Topics_736.pdf.Search in Google Scholar
24. Yuan, Z.; Cheng, N.; Li, J.; Yuan, H.; Peng, J.; Qian, X.; Ni, Y.; He, Z.; Shen, J. Int. J. Biol. Macromol. 2024, 133280. https://doi.org/10.1016/j.ijbiomac.2024.133280.Search in Google Scholar PubMed
25. Adil, M.; Khan, T.; Aasim, M.; Khan, A. A.; Ashraf, M. AMB Express 2019, 9, 1–12. https://doi.org/10.1186/s13568-019-0797-2.Search in Google Scholar PubMed PubMed Central
26. Kiani, B. H.; Ikram, F.; Fatima, H.; Alhodaib, A.; Haq, I. U.; Ur-Rehman, T.; Naz, I. Sci. Rep. 2022, 12, 1–13. https://doi.org/10.1016/j.biopha.2023.114872.Search in Google Scholar PubMed
27. Ali, M. Z.; Mehmood, M. H.; Saleem, M.; Akash, M. S. H.; Malik, A. Heliyon 2021, 7; https://doi.org/10.1016/j.heliyon.2021.e08094.Search in Google Scholar PubMed PubMed Central
28. Wickramaratne, M. N.; Punchihewa, J.; Wickramaratne, D. BMC Complement. Altern. Med. 2016, 16, 1–5. https://doi.org/10.1186/s12906-016-1452-y.Search in Google Scholar PubMed PubMed Central
29. Li, W.; Liu, X.; Liu, Z.; Xing, Q.; Liu, R.; Wu, Q.; Hu, Y.; Zhang, J. Front. pharmacol. 2024, 15, 1416403. https://doi.org/10.3389/fphar.2024.1416403.Search in Google Scholar PubMed PubMed Central
30. Sathiavelu, A.; Sangeetha, S.; Archit, R.; Mythili, S. Int. J. Drug Dev. Res. 2013, 5, 323–328. https://www.itmedicalteam.pl/articles/in-vitro-antidiabetic-activity-of-aqueous-extract-of-the-medicinalplants-nigella-sativa-eugenia-jambolana-andrographis-paniculataand-gymnema-sylvestre.pdf.Search in Google Scholar
31. Siddiqui, A. J.; Danciu, C.; Ashraf, S. A.; Moin, A.; Singh, R.; Alreshidi, M.; Patel, M.; Jahan, S.; Kumar, S.; Alkhinjar, M. I.; Badraoui, R.; Snoussi, M.; Adnan, M. Plants 2020, 9, 1244. https://doi.org/10.3390/plants9091244.Search in Google Scholar PubMed PubMed Central
32. Sher, M.; Khan, S. A.; Shahid, S.; Javed, M.; Qamar, M. A.; Chinnathambi, A.; Almoallim, H. S. J. Environ. Chem. Eng. 2021, 9, 105366. https://doi.org/10.1016/j.jece.2021.105366.Search in Google Scholar
33. Hassan, D.; Khalil, A. T.; Solangi, A. R.; El-Mallul, A.; Shinwari, Z. K.; Maaza, M. Appl. Organomet. Chem. 2019, 33, e5041. https://doi.org/10.1007/s12010-024-05151-7.Search in Google Scholar PubMed
34. Singh, J.; Verma, V.; Kumar, R. Vacuum 2019, 159, 282–286. https://doi.org/10.1016/j.vacuum.2018.09.033.Search in Google Scholar
35. Anandhi, J.; Rayer, S.; Chithambarathanu, T. Chem. Mater. 2017, 5, 43–55.10.13189/cme.2017.050204Search in Google Scholar
36. Panda, A. K.; Singh, A.; Divakar, R.; Krishna, N. G.; Reddy, V.; Thirumurugesan, R.; Murugesan, S.; Parameswaran, P.; Mohandas, E. Thin Solid Films 2018, 660, 328–334. https://doi.org/10.1016/j.tsf.2018.06.030.Search in Google Scholar
37. Singh, J.; Verma, V.; Kumar, R.; Kumar, R. Mater. Res. Express 2019, 6, 106406; https://doi.org/10.1088/2053-1591/ab3543.Search in Google Scholar
38. Shi, S.; Li, K.; Peng, J.; Li, J.; Luo, L.; Liu, M.; Chen, Y.; Xiang, Z.; Xiong, P.; Liu, L.; Cai, W. Biomed Pharmacother. 2022, 149, 112828. https://doi.org/10.1016/j.biopha.2022.112828.Search in Google Scholar PubMed
39. Carmona-Jiménez, Y.; García-Moreno, M. V.; Igartuburu, J. M.; Barroso, C. G. Food Chem 2014, 165, 198–204; https://doi.org/10.1016/j.foodchem.2014.05.106.Search in Google Scholar PubMed
40. Abdul-Zahra, M. A.; Abbass, N. M. Iraqi J. Sci. 2024, 623–633; https://doi.org/10.24996/ijs.2024.65.2.4.Search in Google Scholar
41. Chauhan, A.; Sharma, P.; Srivastava, P.; Kumar, N.; Dudhe, R. Pharm. Lett. 2010, 2, 369–387. https://www.scholarsresearchlibrary.com/articles/plants-having-potential-antidiabetic-activity-a-review.pdf.Search in Google Scholar
42. Shahi, A.; Prasad, V.; Imam, S. S.; Muheem, A.; Jahangir, M. A.; Asian, J. Biomed. Pharm. Sci. 2018, 8, 28–38; https://doi.org/10.4066/2249-622X.65.18-845.Search in Google Scholar
43. Cheng, X.; Huang, J.; Li, H.; Zhao, D.; Liu, Z.; Zhu, L.; Zhang, Z.; Peng, W. Phytomedicine 2024, 126, 154887; https://doi.org/10.1016/j.phymed.2023.154887.Search in Google Scholar PubMed
44. Mahomoodally, M. F.; Lobine, D.; Picot-Allain, M. C.; Sadeer, N.; Jugreet, S.; Zengin, G. Curr. Med. Chem. 2021, 28, 4638–4669. https://doi.org/10.2174/0929867327666201102120120.Search in Google Scholar PubMed
45. Wei, Y.; Xu, S.; Wu, Z.; Zhang, M.; Bao, M.; He, B. Medicine 2024, 103, e40412. https://doi.org/10.1097/MD.0000000000040412.Search in Google Scholar PubMed PubMed Central
46. Slavova, I.; Genisheva, T.; Angelova, G.; Chalumov, V.; Tomova, T.; Argirova, M. Plants 2024, 13, 1406. https://doi.org/10.3390/plants13101406.Search in Google Scholar PubMed PubMed Central
47. Gahlawat, G.; Choudhury, A. R. RSC Adv. 2019, 9, 12944–12967; https://doi.org/10.1039/C8RA10483B.Search in Google Scholar
48. Qamar, M. A.; Javed, M.; Shahid, S.; Iqbal, S.; Abubshait, S. A.; Abubshait, H. A.; Ramay, S. M.; Mahmood, A.; Ghaithan, H. M., J. Environ. Chem. Eng. 2021, 9, 105534. https://doi.org/10.1016/j.jece.2021.105534.Search in Google Scholar
49. Qamar, M. A.; Javed, M.; Shahid, S. Opt. Mater. 2022, 126, 112211. https://doi.org/10.1016/j.optmat.2022.112211.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Enhancing polymer composites with date palm residues for sustainable innovation: a review
- Original Papers
- Performance assessment of disc brake systems fabricated from eco-friendly materials
- Study on tribological behavior of Phyllostachys bambusoides bamboo fiber reinforced epoxy composites from Arunachal Pradesh, India
- Charcoal ash derived from mature-wood twigs of neem (Azadirachta indica): an economical, accessible material with multifaceted application potential
- Degradation of organic pollutant through ternary metal oxides nanocomposite (MgO–CaO–CoO) photocatalyst synthesized using Daucus carota pomace extract
- Eco-friendly synthesis of Cr2O3 nanoparticles with antioxidant, antidiabetic, and antibacterial activities
- Increased magnetic coercivity and enhanced microwave absorption in Cr2+–Al3+ doped BaSr ferrites and the composites with multiwall carbon nanotube
- Experimental determination of phase equilibria in the Ce–Co–Ti ternary system
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Enhancing polymer composites with date palm residues for sustainable innovation: a review
- Original Papers
- Performance assessment of disc brake systems fabricated from eco-friendly materials
- Study on tribological behavior of Phyllostachys bambusoides bamboo fiber reinforced epoxy composites from Arunachal Pradesh, India
- Charcoal ash derived from mature-wood twigs of neem (Azadirachta indica): an economical, accessible material with multifaceted application potential
- Degradation of organic pollutant through ternary metal oxides nanocomposite (MgO–CaO–CoO) photocatalyst synthesized using Daucus carota pomace extract
- Eco-friendly synthesis of Cr2O3 nanoparticles with antioxidant, antidiabetic, and antibacterial activities
- Increased magnetic coercivity and enhanced microwave absorption in Cr2+–Al3+ doped BaSr ferrites and the composites with multiwall carbon nanotube
- Experimental determination of phase equilibria in the Ce–Co–Ti ternary system
- News
- DGM – Deutsche Gesellschaft für Materialkunde