Abstract
This study investigated the characteristics of a nano-web made using the electrospinning technique, which incorporated Halloysite clay nanotubes. The focus was on understanding how different ultrasonic frequencies affected the properties of the nano-web. Through the use of field emission scanning electron microscopy and elemental mapping, it was confirmed that the Halloysite clay nanotubes were present and provided insights into the morphology of the samples. The electrical conductivity results were impressive, and the treated specimens showed higher crease recovery properties compared to the untreated ones, thanks to the presence of Halloysite clay nanotubes and the various ultrasound frequencies used. In addition, the samples demonstrated improved ultraviolet-blocking abilities as well as excellent strength and resistance to abrasion. Overall, the nanocomposite webs displayed promising features that could find applications in multiple industries.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: BS designed this study, AD supervised the experimental work, MS revised the manuscript and MS worked in lab. The author read and approved the final manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All authors declare that they have no conflicts of interest.
-
Research funding: This work was supported by Islamic Azad University-Yazd Branch (Award No.: 1403-01).
-
Data availability: Data available on request from the authors.
References
1. Mirjalili, M.; Zohoori, S. Review for Application of Electrospinning and Electrospun Nanofibers Technology in Textile Industry. J. Nanostruct. Chem. 2016, 6 (3), 207–213. https://doi.org/10.1007/s40097-016-0189-y.Search in Google Scholar
2. Zohoori, S.; Latifi, M.; Davodiroknabadi, A.; Mirjalili, M. Vibration Electrospinning of Polyamide-66/Multiwall Carbon Nanotube Nanocomposite: Introducing Electrically Conductive, Ultraviolet Blocking and Antibacterial Properties. Pol. J. Chem. Technol. 2017, 19 (3), 56–60. https://doi.org10/.1515/pjct-2017-0049.10.1515/pjct-2017-0049Search in Google Scholar
3. Lebedev, A. S.; Suzdal’tsev, A. V.; Anfilogov, V. N.; Farlenkov, A. S.; Porotnikova, N. M.; Vovkotrub, E. G.; Akashev, L. A. Carbothermal Synthesis, Properties, and Structure of Ultrafine SiC Fibers. Inorg. Mater. 2020, 56 (1), 20–27. https://doi.org/10.1134/s0020168520010094.Search in Google Scholar
4. Suvorova, Y. V.; Alekseeva, S. I.; Fronya, M. A.; Viktorova, I. V. Investigations of Physical and Mechanical Properties of Polymeric Nanocomposites (Review). Inorg. Mater. 2013, 49 (15), 1357–1368. https://doi.org/10.1134/s0020168513150089.Search in Google Scholar
5. Al-Attabi, A.; Abdulhadi, M. A.; Al-Ameer, L. R.; Hussein, M. D. N.; Abdulameer, S. J.; Zabibah, R. S.; Fadhil, A. A. Potential of Multifunctional Electrospun Nanofibers in Cancer Management. Int. J. Mater. Res. 2024, 115 (3), 162–178. https://doi.org/10.1515/ijmr-2023-0125.Search in Google Scholar
6. Ghiasi, Y.; Davodiroknabadi, A.; Zohoori, S. Electrospinning of Wheat Bran cellulose/TiO2/ZnO Nanofibre and Investigating the UV Blocking and Bactericidal Properties. Bull. Mater. Sci. 2021, 44 (2), 89–95. https://doi.org/10.1007/s12034-021-02406-5.Search in Google Scholar
7. Zohoori, S.; Shahsavari, S.; Sabzali, M.; Hosseini, S. A.; Talebikatieklahijany, R.; Morshedzadeh, Z. Reinforcing of Viscose Fabric Using Nano Web of Palm-Cellulose Carbon Mesoporous Nanoparticle Composite. J. Nat. Fibers 2022, 19 (14), 8937–8945. https://doi.org/10.1080/15440478.2021.1975600.Search in Google Scholar
8. Asakereh, M.; Zohoori, S.; Mohammadisaghand, F.; Sabzali, M.; Mohammadisaghand, R.; Soltani, B. Extracting Hazelnut Green Shell Cellulose and Electrospinning Nanofibers Doped with Gelatin/Nano Silver. J. Nat. Fibers 2022, 19 (17), 15552–15562. https://doi.org/10.1080/15440478.2022.2131024.Search in Google Scholar
9. Alghamdi, M. M.; El-Zahhar, A. A. Cellulose Acetate Butyrate Graphene Oxide Nanocomposite Membrane: Fabrication, Characterization and Performance. Chem. Ind. Chem. Eng. Q. 2021, 27 (1), 35–44. https://doi.org/10.2298/ciceq200128022a.Search in Google Scholar
10. Krithika, S. M. U.; Mani, K.; Thangavelu, S. K.; Bharathi, C. M.; Saravanan, K.; Prakash, C. Investigation of the Physical Properties and Acoustic Performance of Composites Developed from Natural Fibres. AATCC J. Res. 2022, 9 (4), 213–220. https://doi.org/10.1177/24723444221103675.Search in Google Scholar
11. Il’in, E. G.; Parshakov, A. S.; Kottsov, S. Y.; Razumov, M. I.; Gryzlov, D. Y. Preparation of Nanoporous Carbon from a Spherical NbC/C Nanocomposite and Its Properties. Inorg. Mater. 2022, 58 (11), 1130–1136. https://doi.org/10.1134/s002016852211005x.Search in Google Scholar
12. Şimşek, V.; Çağlayan, M. O. Nanocrystalline PbS Thin Film Produced by Alkaline Chemical Bath Deposition: Effect of Inhibitor Levels and Temperature on the Physicochemical Properties. Int. J. Mater. Res. 2023, 114 (12), 1047–1057. https://doi.org/10.1515/ijmr-2022-0491.Search in Google Scholar
13. Momeni, A.; Ghadi, A.; Fazaeli, R.; Khavarpour, M. Synthesis, Characterization, and Optimization of a Quaternary Nanocomposite for Efficient Electromagnetic Absorption Coating in the X-Band. Int. J. Mater. Res. 2023, 114 (9), 753–764. https://doi.org/10.1515/ijmr-2021-8516.Search in Google Scholar
14. Pavliňáková, V.; Fohlerová, Z.; Pavliňák, D.; Khunová, V.; Vojtová, L. Effect of Halloysite Nanotube Structure on Physical, Chemical, Structural and Biological Properties of Elastic Polycaprolactone/Gelatin Nanofibers for Wound Healing Applications. Mater. Sci. Eng. C. 2018, 91, 94–102. https://doi.org/10.1016/j.msec.2018.05.033.Search in Google Scholar PubMed
15. Movahedi, M.; Karbasi, S. A Core-Shell Electrospun Scaffold of Polyhydroxybutyrate-Starch/Halloysite Nanotubes Containing Extracellular Matrix and Chitosan for Articular Cartilage Tissue Engineering Application. J. Polym. Environ. 2023, 31 (7), 3052–3069. https://doi.org/10.1007/s10924-023-02800-6.Search in Google Scholar
16. Zhang, Y.; Meng, R.; Zhou, J.; Liu, X.; Guo, W. Halloysite Nanotubes-Decorated Electrospun Biobased Polyamide Scaffolds for Tissue Engineering Applications. Colloids Surf., A 2022, 648, 129378–129384. https://doi.org/10.1016/j.colsurfa.2022.129378.Search in Google Scholar
17. Joseph Gbadeyan, O.; Mohan, T. P.; Kanny, K. Effect of Loading Nano-Clay on Banana Fibers Infused Epoxy Composite Wear Rate Thermal Property and Water Absorption Properties. Mater. Today: Proc. 2023, 87, 252–256. https://doi.org/10.1016/j.matpr.2023.05.352.Search in Google Scholar
18. Wong, L. W.; Tan, J. B. L. Halloysite Nanotube-Polymer Nanocomposites: A Review on Fabrication and Biomedical Applications. J. Manuf. Process. 2024, 118, 76–88. https://doi.org/10.1016/j.jmapro.2024.03.043.Search in Google Scholar
19. Zubkiewicz, A.; Szymczyk, A.; Franciszczak, P.; Kochmanska, A.; Janowska, I.; Paszkiewicz, S. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites. Materials 2020, 13 (17), 3809–4382. https://doi.org/10.3390/ma13173809.Search in Google Scholar PubMed PubMed Central
20. Wong, L. W.; Pasbakhsh, P.; Arabi, A. M.; Keeling, J.; Tan, J. B. L. Halloysite Nanotubes from Various Geological Deposits: New Insights to Acid Etching and Their Impacts on Products’ Characteristics. J. Environ. Chem. Eng. 2021, 9 (5), 106235–106241. https://doi.org/10.1016/j.jece.2021.106235.Search in Google Scholar
21. Aghajani-Memar, S.; Mohammadkazemi, F.; Kermanian, H.; Hamedi, S. Synergistic Effect of Bacterial Cellulose and Halloysite Nanotubes on the Properties of the Sodium Caseinate-Based Nanobiocomposites. Appl. Clay Sci. 2022, 222, 106493–106499. https://doi.org/10.1016/j.clay.2022.106493.Search in Google Scholar
22. Franciszczak, P.; Taraghi, I.; Paszkiewicz, S.; Burzyński, M.; Meljon, A.; Piesowicz, E. Effect of Halloysite Nanotube on Mechanical Properties, Thermal Stability and Morphology of Polypropylene and Polypropylene/Short Kenaf Fibers Hybrid Biocomposites. Materials 2020, 13 (19), 4459–4468. https://doi.org/10.3390/ma13194459.Search in Google Scholar PubMed PubMed Central
23. Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Effects of Halloysite Content on the Thermo-Mechanical Performances of Composite Bioplastics. Appl. Clay Sci. 2020, 185, 105416–105422. https://doi.org/10.1016/j.clay.2019.105416.Search in Google Scholar
24. Zohoori, S.; Dolatshahi, M.; Pourahmadi, M.; Hajisafari, M. An Inverter-Based, CMOS, Low-Power Optical Receiver Front-End. Fiber Integr. Opt. 2019, 38 (1), 1–20. https://doi.org/10.1080/01468030.2019.1567871.Search in Google Scholar
25. Soltanisarvestani, R.; Zohoori, S.; Soltanisarvestani, A. A RGC-Based, Low-Power, CMOS Transimpedance Amplifier for 10Gb/s Optical Receivers. Int. J. Electron. 2020, 107 (3), 444–460. https://doi.org/10.1080/00207217.2019.1661027.Search in Google Scholar
26. Rong, R.; Xu, X.; Zhu, S.; Li, B.; Wang, X.; Tang, K. Facile Preparation of Homogeneous and Length Controllable Halloysite Nanotubes by Ultrasonic Scission and Uniform Viscosity Centrifugation. Chem. Eng. J. 2016, 291, 20–29. https://doi.org/10.1016/j.cej.2016.01.082.Search in Google Scholar
27. Pongsuk, P.; Pumchusak, J. Effect of Ultrasonication on the Morphology, Mechanical Property, Ionic Conductivity, and Flame Retardancy of PEO-LiCF3SO3-Halloysite Nanotube Composites for Use as Solid Polymer Electrolyte. Polymers 2022, 14 (18), 3710–3721. https://doi.org/10.3390/polym14183710.Search in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde