Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
Abstract
Piezoelectric materials, traditionally recognized for their intriguing electrical properties, have recently emerged as promising candidates in catalysis. This shift in focus stems from their ability to generate electrical charges in response to mechanical stress, which imparts distinct advantages for catalytic applications. This study explores the growing body of research highlighting the catalytic potential of piezoelectric materials, emphasizing their unique properties that set them apart from conventional catalysts. Piezoelectric catalysts offer a novel approach to catalysis by exploiting their polarization-induced surface reactivity. The polarization in these materials can influence adsorption energies, reaction pathways, and kinetics, thereby influencing catalytic activity. This paper delves into the fundamental principles governing the catalytic behaviour of piezoelectric, presenting key experimental findings and theoretical insights. Here, emphasis is given to the catalytic property of piezoelectric in carbon dioxide photoreduction. Furthermore, we have discussed the challenges and opportunities of employing piezoelectric materials as catalysts. This paper provides a comprehensive overview of the current state of knowledge in this emerging field, highlighting the potential applications and outlining the key challenges that researchers face in harnessing the catalytic prowess of piezoelectric materials. As the understanding of these materials continues to deepen, the integration of piezoelectric catalysts into practical applications may significantly impact various industries, ushering in a new era of efficient and tailored catalytic processes.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Penner, S. S.; Schneider, A. M.; Kennedy, E. M. Acta Astronaut. 1984, 11, 345; https://doi.org/10.1016/0094–5765(84)90045–6.10.1016/0094-5765(84)90045-6Suche in Google Scholar
2. Dong, K.; Dong, X.; Dong, C. Appl. Econ. 2019, 51, 5031; https://doi.org/10.1080/00036846.2019.1606410.Suche in Google Scholar
3. Fawzy, S.; Osman, A. I.; Doran, J.; Rooney, D. W. Environ. Chem. Lett. 2020, 18, 2069; https://doi.org/10.1007/s10311–020–01059.10.1007/s10311-020-01059-wSuche in Google Scholar
4. Damien, J. F.; Everard, C. D.; Fagan, C. C.; McDonnell, K. P. Renew. Sustain. Energy Rev. 2013, 21, 712; https://doi.org/10.1016/j.rser.2012.12.038.Suche in Google Scholar
5. Tang, Q.; Luo, Le. Aust Account Rev. 2014, 24, 84; https://doi.org/10.1111/auar.12010.Suche in Google Scholar
6. Modak, A.; Bhanja, P.; Dutta, S.; Chowdhury, B.; Bhaumik, A. Green Chem. 2020, 22, 4002; https://doi.org/10.1039/d0gc01092h.Suche in Google Scholar
7. Mohamed, M.; Tahir, M.; Tasleem, S. J. Environ. Chem. Eng. 2021, 9, 106264; https://doi.org/10.1016/j.jece.2021.106264.Suche in Google Scholar
8. Wang, W. N.; Soulis, J.; Yang, Y. J.; Biswas, P. Aerosol Air Qual. Res. 2014, 14, 533. https://doi.org/10.4209/aaqr.2013.09.0283.Suche in Google Scholar
9. Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132; https://doi.org/10.1021/ja910091z.Suche in Google Scholar PubMed PubMed Central
10. Fu, J.; Liu, K.; Jiang, K.; Li, H.; An, P.; Li, W.; Zhang, N.; Li, H.; Xu, X.; Zhou, H.; Tang, D.; Wang, X.; Qiu, X.; Liu, M. Adv. Sci. 2019, 6, 1900796; https://doi.org/10.1002/advs.201900796.Suche in Google Scholar PubMed PubMed Central
11. Singhal, N.; Kumar, U. J. Mol. Catal. 2017, 439, 91; https://doi.org/10.1016/j.mcat.2017.06.031.Suche in Google Scholar
12. Zhu, X.; Xu, H.; Bi, C.; Song, H.; Zhou, G.; Zhong, K.; Yang, J.; Yi, J.; Xu, H.; Wang, X. Ultrason. Sonochem. 2023, 101, 106653; https://doi.org/10.1016/j.ultsonch.2023.106653.Suche in Google Scholar PubMed PubMed Central
13. Wang, X.; Jiang, J.; Yang, Li; Qi, An; Xu, Q.; Yang, Y.; Guo, H. Appl. Catal. B: Environ. 2024, 340, 123177; https://doi.org/10.1016/j.apcatb.2023.123177.Suche in Google Scholar
14. Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Adv. Funct. Mater. 2020, 30, 2005158; https://doi.org/10.1002/adfm.202005158.Suche in Google Scholar
15. Xu, Q.; Jiang, J.; Sheng, X.; Qi, J.; Wang, X.; Duan, L.; Guo, H. Inorg. Chem. Front. 2023, 10, 2939; https://doi.org/10.1039/D3QI00405H.Suche in Google Scholar
16. He, J.; Wang, X.; Lan, S.; Tao, H.; Luo, X.; Zhou, Y.; Zhu, M. Appl. Catal. B: Environ. 2022, 317, 121747; https://doi.org/10.1016/j.apcatb.2022.121747.Suche in Google Scholar
17. Xu, Q.; Wang, L.; Sheng, X.; Yang, Y.; Zhang, C.; Duan, L.; Guo, H. Appl. Catal. B: Environ. 2023, 338, 123058; https://doi.org/10.1016/j.apcatb.2023.123058.Suche in Google Scholar
18. Pham Thi Thuy Phuong; Vo, D.-V. N.; Hoang Duy, N. P.; Pearce, H.; Michail Tsikriteas, Z.; Roake, E.; Bowen, C.; Khanbareh, H. Nano Energy 2022, 95, 10703; https://doi.org/10.1016/j.nanoen.2022.107032.Suche in Google Scholar
19. Wang, H.; Zhang, X.; Hu, C.; Cai, H.; Tu, S.; Huang, H. Appl. Surf. Sci. 2024, 650, 159214; https://doi.org/10.1016/j.apsusc.2023.159214.Suche in Google Scholar
20. Jing, L.; Xu, Y.; Xie, M.; Li, Z.; Wu, C.; Zhao, H.; Wang, J.; Wang, H.; Yan, Y.; Zhong, Na; Li, H.; Hu, J. Nano Energy 2023, 112, 108508; https://doi.org/10.1016/j.nanoen.2023.108508.Suche in Google Scholar
21. Wu, J.; Huang, Y.; Wen, Ye; Li, Y. Adv. Sci. 2017, 4, 1700194; https://doi.org/10.1002/advs.201700194.Suche in Google Scholar PubMed PubMed Central
22. Wu, N.; Bao, B.; Wang, Q. Eng. Struct. 2021, 235, 112068; https://doi.org/10.1016/j.engstruct.2021.112068.Suche in Google Scholar
23. Okayasu, M.; Sato, Y.; Mizuno, M.; Shiraishi, T. Ceram. Int. 2012, 38, 4579; https://doi.org/10.1016/j.ceramint.2012.02.036.Suche in Google Scholar
24. Shi, H.; Liu, Y.; Bai, Y.; He, L.; Wen, Z.; Liu, Y.; Yu, D. G. Sep. Purif. Technol. 2024, 330, 125247; https://doi.org/10.1016/j.seppur.2023.125247.Suche in Google Scholar
25. Ma, J.; Xia, Lu; Wu, Di; Feng, Y.; Ban, C.; Ruan, L.; Guan, J.; Zhang, M.; Zhou, R.; Yan Dai, J.; Gan, L.-Y.; Zhou, X. Nano Energy 2024, 121, 109258; https://doi.org/10.1016/j.nanoen.2024.109258.Suche in Google Scholar
26. Lu, S.; Zhang, S.; Li, L.; Liu, C.; Zhou, L.; Luo, D. Chem. Eng. J. 2024, 483, 149058; https://doi.org/10.1016/j.cej.2024.149058.Suche in Google Scholar
27. Liu, L.; Hu, J.; Ma, Z.; Zhu, Z.; He, B.; Chen, F.; Lu, Y.; Xu, R.; Zhang, Y.; Ma, T.; Sui, M.; Huang, H. Nat. Commun. 2024, 15, 305; https://doi.org/10.1038/s41467–023–44493–4.10.1038/s41467-023-44493-4Suche in Google Scholar PubMed PubMed Central
28. Lin, Ju; Tan, X.; Mao, X.; Gu, Y.; Smith, S.; Du, A.; Chen, Z.; Chen, C.; Kou, L. Nat. Commun. 2021, 12, 5128; https://doi.org/10.1038/s41467–021–25426–5.10.1038/s41467-021-25426-5Suche in Google Scholar PubMed PubMed Central
29. Jin, C.-C.; Liu, D.-M.; Zhang, L.-X.; Micro, A. Small 2023, 19, 2303586; https://doi.org/10.1002/smll.202303586.Suche in Google Scholar PubMed
30. Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Appl. Catal. B: Environ. 2018, 241, 256; https://doi.org/10.1016/j.apcatb.2018.09.028.Suche in Google Scholar
31. Liang, F.; Chen, Z.; Lu, Z.; Wang, X. J. Coll. Interface Sci. 2023, 630, 191; https://doi.org/10.1016/j.jcis.2022.09.150.Suche in Google Scholar PubMed
32. Bagchi, B.; Amin Hoque, N.; Janowicz, N.; Das, S.; Tiwari, M. K. Nano Energy 2020, 78, 105339; https://doi.org/10.1016/j.nanoen.2020.105339.Suche in Google Scholar PubMed PubMed Central
33. Wang, Y.; Xiao, Li; Chen, Y.; Yue, Li; Liu, Z.; Fang, C.; Wu, T.; Niu, H.; Yang, Li; Sun, W.; Tang, W.; Xia, W.; Song, K.; Liu, H.; Zhou, W. Adv. Mater. 2023, 35, 2305257; https://doi.org/10.1002/adma.202305257.Suche in Google Scholar PubMed
34. Ma, J.; Di, W.; Feng, Y.; Ban, C.; Xia, Lu; Ruan, L.; Guan, J.; Wang, Y.; Meng, J.; Dai, J.-Y.; Gan, L.-Y.; Zhou, X. Nano Energy 2023, 115, 108719; https://doi.org/10.1016/j.nanoen.2023.108719.Suche in Google Scholar
35. Zijun, W.; Ji, T.; Zhou, X.; Guo, J.; Yu, X.; Liu, H.; Wang, J.; Micro, N. Small 2023, 19, 2304202; https://doi.org/10.1002/smll.202304202.Suche in Google Scholar PubMed
36. Xie, H.; Chen, S.; Ma, F.; Liang, J.; Miao, Z.; Wang, T.; Wang, H.-L.; Huang, Y.; Li, Q. ACS Appl. Mater. Interfaces 2018, 10, 36996; https://doi.org/10.1021/acsami.8b12747.Suche in Google Scholar PubMed
37. Zheng, H.; Li, X.; Zhu, K.; Liang, P.; Wu, M.; Rao, Yu; Ran, J.; Shi, F.; Wang, J.; Yan, K.; Liu, J. Nano Energy 2022, 93, 106831; https://doi.org/10.1016/j.nanoen.2021.106831.Suche in Google Scholar
38. Ho Park, Y.; Murali, G.; Kumar Reddy Modigunta, J.; Insik, I. Su-Il In: Front. Chem., 9, 734108; https://doi.org/10.3389/fchem.2021.734108.Suche in Google Scholar PubMed PubMed Central
39. Wu, H.-L.; Li, X.-B.; Tung, C.-Ho; Wu, L.-Z. Adv.Mater. 2019, 31, 1900709; https://doi.org/10.1002/adma.201900709.Suche in Google Scholar PubMed
40. Liu, M.; Liu, M.; Wang, X.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H.; Qiu, X.; Liu, K.; Hu, J.; Jia, C.; Wang, P.; Zhou, H.; He, J.; Zhong, M.; Lan, X.; Zhou, Y.; Wang, Z.; Li, J.; Ali, S.; Cao, T. D.; Liang, H.; Zou, C.; Zhang, D.; Yang, Y.; Chan, T.-S.; Han, Yu; Cavallo, L.; Sham, T.-K.; Hwang, B.-J.; Edward, H. S. Joule 2019, 3, 1703; https://doi.org/10.1016/j.joule.2019.05.010.Suche in Google Scholar
41. Huang, H.-B.; Fang, Z.-B.; Wang, R.; Li, L.; Khanpour, M.; Liu, T.-F.; Cao, R.; Micro, N. Small 2022, 18, 2200407; https://doi.org/10.1002/smll.202200407.Suche in Google Scholar PubMed
42. Wang, S.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4-In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. J. Am. Chem. Soc. 2018, 140 (15), 5037–5040; https://doi.org/10.1021/jacs.8b02200.Suche in Google Scholar PubMed
43. Cheng, L.; Zhang, D.; Liao, Y.; Fan, J.; Xiang, Q. Chinese. J. Catal. 2021, 42, 131; https://doi.org/10.1016/S1872–2067(20)63623–3.10.1016/S1872-2067(20)63623-3Suche in Google Scholar
44. Hiragond, C.; Ali, S.; Sorcar, S.; In, S. I. Su-Il, I. Catal. 2019, 9, 370; https://doi.org/10.3390/catal9040370.Suche in Google Scholar
45. Bößl, F.; Tudela, I. Curr. Opin. Green Sustain. Chem. 2021, 32, 100537; https://doi.org/10.1016/j.cogsc.2021.100537.Suche in Google Scholar
46. Zhang, Y.; Phuong, P. T. T.; Hoang Duy, N. P.; Roake, E.; Khanbareh, H.; Hopkins, M.; Zhou, X.; Zhang logoa, D.; Zhou, K.; Bowen, C. Nanoscale Adv. 2021, 3, 1362; https://doi.org/10.1039/D1NA00013F.Suche in Google Scholar PubMed PubMed Central
47. Hu, C.; Tu, S.; Tian, Na; Ma, T.; Zhang, Y.; Huang, H. Angew. Chem., Int. Ed. 2021, 60, 16309; https://doi.org/10.1002/anie.202009518.Suche in Google Scholar PubMed
48. Cai, W.; Ma, X.; Chen, J.; Shi, R.; Wang, Y.; Yang, Y.; Jing, D.; Yuan, H.; Du, J.; Que, M. Appl. Surf. Sci. 2023, 619, 156773; https://doi.org/10.1016/j.apsusc.2023.156773.Suche in Google Scholar
49. Li, H.; Sang, Y.; Chang, S.; Huang, X.; Zhang, Y.; Yang, R.; Jiang, H.; Liu, H.; Zhong, L. W. Nano Lett. 2015, 15, 2372; https://doi.org/10.1021/nl504630j.Suche in Google Scholar PubMed
50. Ren, Z.; Chen, F.; Zhao, Q.; Zhao, G.; Li, H.; Sun, W.; Huang, H.; Ma, T. Appl. Catal. B: Environ. 2023, 320, 122007; https://doi.org/10.1016/j.apcatb.2022.122007.Suche in Google Scholar
51. Yang, G.; Wang, S.; Wu, Y.; Zhou, H.; Zhao, W.; Zhong, S.; Liu, L.; Bai, S. ACS Appl. Mater. Interfaces 2023, 15, 14228; https://doi.org/10.1021/acsami.2c20685.Suche in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- ICEAM 2023 and ICHEAM-2024
- Reviews
- Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
- Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
- Original Papers
- Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
- Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
- Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
- Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
- Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
- Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
- Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
- Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
- Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- ICEAM 2023 and ICHEAM-2024
- Reviews
- Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
- Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
- Original Papers
- Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
- Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
- Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
- Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
- Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
- Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
- Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
- Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
- Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
- News
- DGM – Deutsche Gesellschaft für Materialkunde