Abstract
The growing demand for sustainable and eco-friendly energy storage technologies has spurred extensive research into novel materials for batteries. This review investigates alternatives to traditional batteries that use synthetic polymers, such as polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), and polypropylene (PP), which often involve hazardous materials and significant environmental impact. It focuses on cellulose, a biopolymer derived from renewable sources, and its derivative, nanocellulose, as promising, eco-friendly alternatives for various battery components. Cellulose, a biopolymer derived from renewable sources, has emerged as a promising candidate due to its abundant availability, low cost, and inherent eco-friendliness. Cellulose is greatly used in development of polymer electrolyte, anode, and cathode materials, acts as binder or additives and as a separator. These uses are discussed, showcasing their electrochemical performance, capacity retention, and rate capability. Nanocellulose, with its nanoscale porosity and mechanical stability, is shown to be a promising separator material, enhancing ion transport, and improving battery cyclability. Moreover, potential modifications and optimization strategies to improve battery performance have been discussed. Despite their potential advantages, cellulose-based batteries are still in the research and development stage. Several challenges must be addressed, including manufacturing scalability, optimizing energy density, and achieving high power outputs. However, ongoing research and advancements in polymer electrolyte materials bring us closer to commercialising these promising battery technologies. Cellulose-based batteries offer reduced environmental impact throughout their life cycle, from sourcing to disposal, contributing to a greener and more circular economy. In conclusion, cellulose-based batteries demonstrate great promise as an environmentally friendly and sustainable energy storage solution. This review aims to provide concise and insightful information on cellulose’s application in different components of batteries, showcasing its potential to transform the energy storage landscape and contribute to a cleaner and more sustainable future.
Acknowledgments
We want to thank the Ministry of Higher Education for the Fundamental Research Grant Scheme (FRGS/1/2022/STG04/UM/02/7) awarded to Dr. Nor Mas Mira Abd Rahman. The authors also gratefully acknowledge the financial support for part of this project from the Universiti Malaya under Universiti Malaya Research Excellence Grant (UMREG021-2023) and RU Grant SATU (ST043-2021).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Thivya Selvam: Review, conceptualization, writing – original draft. Nor Mas Mira Abd Rahman: conceptualization, resources, supervision, Writing – review and editing. Siti Zafirah Zainal Abidin: conceptualization, resources, supervision, Writing – review and editing. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was supported by the Ministry of Higher Education for the Fundamental Research Grant Scheme (Grant numbers FRGS/1/2022/STG04/UM/02/7). Author has also received research support from Universiti Malaya under Universiti Malaya Research Excellence Grant (UMREG021-2023) and RU Grant SATU (ST043-2021).
-
Data availability: Not applicable.
References
1. Vazquez, A.; Foresti, M. L.; Moran, J. I.; Cyras, V. P. Extraction and Production of Cellulose Nanofibers. Handb. Polym. Nanocompos. Proc., Perform. Appl. 2014, 81–118. https://doi.org/10.1007/978-3-642-45232-1_57.Search in Google Scholar
2. Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Physicochemical Properties of Microcrystalline Nitrocellulose from Alfa Grass Fibres and its Thermal Stability. J. Therm. Anal. Calorim. 2016, 124 (3), 1485–1496. https://doi.org/10.1007/s10973-016-5293-1.Search in Google Scholar
3. Park, N.-M.; Choi, S.; Oh, J. E.; Hwang, D. Y. Facile Extraction of Cellulose Nanocrystals. Carbohydr. Polym. 2019, 223, 115114. https://doi.org/10.1016/j.carbpol.2019.115114.Search in Google Scholar PubMed
4. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40 (7), 3941. https://doi.org/10.1039/c0cs00108b.Search in Google Scholar PubMed
5. Fidale, L. C.; Heinze, T.; El, O. A. Perichromism: A Powerful Tool for Probing the Properties of Cellulose and its Derivatives. Carbohydr. Polym. 2013, 93 (1), 129–134. https://doi.org/10.1016/j.carbpol.2012.06.061.Search in Google Scholar PubMed
6. Ansari, F.; Sjöstedt, A.; Per, T. L.; Berglund, L. A.; Lars, W. Hierarchical Wood Cellulose Fiber/Epoxy Biocomposites – Materials Design of Fiber Porosity and Nanostructure. Compos. Part A-Appl. Sci. Manuf. 2015, 74, 60–68. https://doi.org/10.1016/j.compositesa.2015.03.024.Search in Google Scholar
7. Salah, S. M. Application of Nano-Cellulose in Textile. J. Textil. Sci. Eng. 2013, 03 (04). https://doi.org/10.4172/2165-8064.1000142.Search in Google Scholar
8. Provin, A. P.; Reis, V. O. D.; Hilesheim, S. E.; Bianchet, R. T.; Dutra, A. R. D. A.; Cubas, A. L. V. Use of Bacterial Cellulose in the Textile Industry and the Wettability Challenge – a Review. Res. Square (Research Square) 2021, 28, 8255–8274. https://doi.org/10.21203/rs.3.rs-246462/v1.Search in Google Scholar
9. Meftahi, A.; Samyn, P.; Geravand, S. A.; Khajavi, R.; Alibkhshi, S.; Bechelany, M.; Barhoum, A. Nanocelluloses as Skin Biocompatible Materials for Skincare, Cosmetics, and Healthcare: Formulations, Regulations, and Emerging Applications. Carbohydr. Polym. 2022, 278, 118956. https://doi.org/10.1016/j.carbpol.2021.118956.Search in Google Scholar PubMed
10. Costa, E. M.; Pereira, C. F.; Ribeiro, A. A.; Casanova, F.; Freixo, R.; Pintado, M.; Ramos, O. L. Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. Appl. Sci. 2022, 12 (13), 6560. https://doi.org/10.3390/app12136560.Search in Google Scholar
11. Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brownjr, R. Microbial Cellulose–The Natural Power to Heal Wounds. Biomaterials 2006, 27 (2), 145–151. https://doi.org/10.1016/j.biomaterials.2005.07.035.Search in Google Scholar PubMed
12. Ullah, H.; Wahid, F.; Santos, H. A.; Khan, T. Advances in Biomedical and Pharmaceutical Applications of Functional Bacterial Cellulose-Based Nanocomposites. Carbohydr. Polym. 2016, 150, 330–352. https://doi.org/10.1016/j.carbpol.2016.05.029.Search in Google Scholar PubMed
13. Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. https://doi.org/10.1016/j.eurpolymj.2014.07.025.Search in Google Scholar
14. Huo, Y.; Liu, Y.; Xia, M.; Du, H.; Lin, Z.; Li, B.; Liu, H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers 2022, 14 (13), 2648. https://doi.org/10.3390/polym14132648.Search in Google Scholar PubMed PubMed Central
15. Yang, X.; Shi, K.; Zhitomirsky, I.; Cranston, E. D. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Adv. Mater. 2015, 27 (40), 6104–6109. https://doi.org/10.1002/adma.201502284.Search in Google Scholar PubMed
16. Chen, C.; Hu, L. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Acc. Chem. Res. 2018, 51 (12), 3154–3165. https://doi.org/10.1021/acs.accounts.8b00391.Search in Google Scholar PubMed
17. Niinivaara, E.; Cranston, E. D. Bottom-up Assembly of Nanocellulose Structures. Carbohydr. Polym. 2020, 247, 116664. https://doi.org/10.1016/j.carbpol.2020.116664.Search in Google Scholar PubMed
18. Ani, P. C.; Nzereogu, P. U.; Agbogu, A. C.; Ezema, F. I.; Nwanya, A. C. Cellulose from Waste Materials for Electrochemical Energy Storage Applications: A Review. Appl. Surf. Sci. Ad. 2022, 11, 100298. https://doi.org/10.1016/j.apsadv.2022.100298.Search in Google Scholar
19. Wang, X.; Yao, C.; Wang, F.; Li, Z. Cellulose-Based Nanomaterials for Energy Applications. Small (Weinheim an der Bergstrasse, Germany) 2017, 13 (42). https://doi.org/10.1002/smll.201702240.Search in Google Scholar PubMed PubMed Central
20. Li, T.; Chen, C.; Brozena, A. H.; Zhu, J. Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O. J.; Isogai, A.; Wågberg, L.; Hu, L. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature 2021, 590 (7844), 47–56. https://doi.org/10.1038/s41586-020-03167-7.Search in Google Scholar PubMed
21. Muddasar, M.; Beaucamp, A.; Culebras, M.; Collins, M. N. Cellulose: Characteristics and Applications for Rechargeable Batteries. Int. J. Biol. Macromol. 2022, 219, 788–803. https://doi.org/10.1016/j.ijbiomac.2022.08.026.Search in Google Scholar PubMed
22. Daud, J. B.; Lee, K. Surface Modification of Nanocellulose. In Handbook of Nanocellulose and Cellulose Nanocomposites; John Wiley & Sons: Hoboken, New Jersey, 2017; pp. 101–122.10.1002/9783527689972.ch3Search in Google Scholar
23. Barbash, V.; Yashchenko, O.; Kedrovska, A. Preparation and Properties of Nanocellulose from Peracetic Flax Pulp. J. Sci. Res. Rep. 2017, 16 (1), 1–10. https://doi.org/10.9734/jsrr/2017/36571.Search in Google Scholar
24. Cheng, H.; Li, L.; Wang, B.; Feng, X.; Mao, Z.; Julius Vancso, G.; Sui, X. Multifaceted Applications of Cellulosic Porous Materials in Environment, Energy, and Health. Prog. Polym. Sci. 2020, 106, 101253. https://doi.org/10.1016/j.progpolymsci.2020.101253.Search in Google Scholar
25. Liu, H.; Du, H.; Zheng, T.; Liu, K.; Ji, X.; Xu, T.; Zhang, X.; Si, C. Cellulose Based Composite Foams and Aerogels for Advanced Energy Storage Devices. Chem. Eng. J. 2021, 426, 130817. https://doi.org/10.1016/j.cej.2021.130817.Search in Google Scholar
26. Tafete, G. A.; Abera, M. K.; Thothadri, G. Review on Nanocellulose-Based Materials for Supercapacitors Applications. J. Energy Storage 2022, 48, 103938. https://doi.org/10.1016/j.est.2021.103938.Search in Google Scholar
27. Chen, Z.; Aziz, T.; Sun, H.; Ullah, A.; Ali, A.; Cheng, L.; Ullah, R.; Khan, F. U. Advances and Applications of Cellulose Bio-Composites in Biodegradable Materials. J. Polym. Environ. 2023, 31 (6), 2273–2284. https://doi.org/10.1007/s10924-022-02561-8.Search in Google Scholar
28. Yu, S.; Sun, J.; Shi, Y.; Wang, Q.; Wu, J.; Liu, J. Nanocellulose from Various Biomass Wastes: Its Preparation and Potential Usages towards the High Value-Added Products. Environ. Sci. Ecotechnol. 2021, 5, 100077. https://doi.org/10.1016/j.ese.2020.100077.Search in Google Scholar PubMed PubMed Central
29. Du, X.; Zhang, Z.; Liu, W.; Deng, Y. Nanocellulose-Based Conductive Materials and Their Emerging Applications in Energy Devices – a Review. Nano Energy 2017, 35, 299–320. https://doi.org/10.1016/j.nanoen.2017.04.001.Search in Google Scholar
30. Sofiah, A. G. N.; Pasupuleti, J.; Samykano, M.; Kadirgama, K.; Koh, S. P.; Tiong, S. K.; Pandey, A. K.; Yaw, C. T.; Natarajan, S. K. Harnessing Nature’s Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences. Polymers 2023, 15 (14), 3044. https://doi.org/10.3390/polym15143044.Search in Google Scholar PubMed PubMed Central
31. Rosa, M. F.; Medeiros, E. S.; Malmonge, J. A.; Gregorski, K. S.; Wood, D. F.; Mattoso, L. H. C.; Glenn, G.; Orts, W. J.; Imam, S. H. Cellulose Nanowhiskers from Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior. Carbohydr. Polym. 2010, 81 (1), 83–92. https://doi.org/10.1016/j.carbpol.2010.01.059.Search in Google Scholar
32. Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strömme, M. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. J. Phys. Chem. B 2010, 114 (12), 4178–4182. https://doi.org/10.1021/jp911272m.Search in Google Scholar PubMed PubMed Central
33. Wang, L.-F.; Shankar, S.; Rhim, J.-W. Properties of Alginate-Based Films Reinforced with Cellulose Fibers and Cellulose Nanowhiskers Isolated from Mulberry Pulp. Food Hydrocoll. 2017, 63, 201–208. https://doi.org/10.1016/j.foodhyd.2016.08.041.Search in Google Scholar
34. Hidayat, R. A. R.; Chika, V. A. A.; Sofyan, M. I.; Restu, W. K.; Triwulandari, E.; Handayani, A. S.; Pramono, E.; Ndruru, S. T. C. L. Isolation, Modification and Characterization of Cellulose from Corn Husk Waste of Puncak-Bogor. ChemistrySelect 2023, 8 (29). https://doi.org/10.1002/slct.202300746.Search in Google Scholar
35. Muthamma, K.; Sunil, D. Cellulose as an Eco-Friendly and Sustainable Material for Optical Anticounterfeiting Applications: An Up-To-Date Appraisal. ACS Omega 2022, 7, 42681–42699. https://doi.org/10.1021/acsomega.2c05547.Search in Google Scholar PubMed PubMed Central
36. Lisbona, D.; Snee, T. A Review of Hazards Associated with Primary Lithium and Lithium-Ion Batteries. Process Saf. Environ. Prot. 2011, 89 (6), 434–442. https://doi.org/10.1016/j.psep.2011.06.022.Search in Google Scholar
37. Fernandes, A.; Cruz-Lopes, L.; Esteves, B.; Evtuguin, D. Nanotechnology Applied to Cellulosic Materials. Materials 2023, 16 (8), 3104. https://doi.org/10.3390/ma16083104.Search in Google Scholar PubMed PubMed Central
38. Keegstra, K. Plant Cell Walls. Plant Physiol. 2010, 154 (2), 483–486. https://doi.org/10.1104/pp.110.161240.Search in Google Scholar PubMed PubMed Central
39. Olsson, R. T.; Fogelström, L.; Martínez-Sanz, M.; Henriksson, M. Cellulose Nanofillers for Food Packaging; Woodhead Publishing Limited: Cambridge, UK, 2011; pp. 86–107.10.1533/9780857092786.1.86Search in Google Scholar
40. Shokri, J.; Adibki, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. Chapter 3. In Cellulose - Medical, Pharmaceutical and Electronic Applications;, IntechOpen: Rijeka, Croatia, 2013. https://doi.org/10.5772/55178.Search in Google Scholar
41. Rudnik, E. Compostable Polymer Materials. Handb. Biopolym. Biodegradable Plastics 2013, 189–211. https://doi.org/10.1016/b978-1-4557-2834-3.00010-0.Search in Google Scholar
42. Chen, H. Lignocellulose Biorefinery Conversion Engineering. Lignocellulose Biorefinery Eng. 2015, 87–124. https://doi.org/10.1016/b978-0-08-100135-6.00004-1.Search in Google Scholar
43. Yunus, M. A. Extraction Cellulose from Rice Husk. J. Akta Kimia Indones. (Indones. Chim. Acta) 2019, 12 (2), 79. https://doi.org/10.20956/ica.v12i2.6559.Search in Google Scholar
44. Chami Khazraji, A.; Robert, S. Self-Assembly and Intermolecular Forces when Cellulose and Water Interact Using Molecular Modeling. J. Nanomater. 2013, 2013, 1–12. https://doi.org/10.1155/2013/745979.Search in Google Scholar
45. Wang, Z.; Pan, R.; Sun, R.; Edström, K.; Strömme, M.; Nyholm, L. Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Appl. Energy Mater. 2018, 1 (8), 4341–4350. https://doi.org/10.1021/acsaem.8b00961.Search in Google Scholar
46. Ramanujam, B. T. S.; Nanjundan, A. K.; Annamalai, P. K. Nanocellulose-Based Carbon as Electrode Materials for Sodium-Ion Batteries. Nanocellulose Based Compos. Electron. 2021, 295–312. https://doi.org/10.1016/b978-0-12-822350-5.00012-6.Search in Google Scholar
47. Liang, Q.; Wang, Y.; Yang, Y.; Xu, T.; Xu, Y.; Zhao, Q.; Heo, S.; Kim, M.; Jeong, Y.-H.; Yao, S.; Song, X.; Choi, S.-E.; Si, C. Nanocellulose/Two Dimensional Nanomaterials Composites for Advanced Supercapacitor Electrodes. Front. Bioeng. Biotechnol. 2022, 10. https://doi.org/10.3389/fbioe.2022.1024453.Search in Google Scholar PubMed PubMed Central
48. Xiao, J.; Li, H.; Zhang, H.; He, S.; Zhang, Q.; Liu, K.; Jiang, S.; Greiner, A.; Zhang, K. Nanocellulose and its Derived Composite Electrodes toward Supercapacitors: Fabrication, Properties, and Challenges. J. Bioresour. Bioprod. 2022, 7 (4), 245–269. https://doi.org/10.1016/j.jobab.2022.05.003.Search in Google Scholar
49. Seo, J.-H.; Chang, T.-H.; Lee, J.; Sabo, R.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. Microwave Flexible Transistors on Cellulose Nanofibrillated Fiber Substrates. Appl. Phys. Lett. 2015, 106 (26). https://doi.org/10.1063/1.4921077.Search in Google Scholar
50. Jung, Y. H.; Chang, T.-H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V. W.; Mi, H.; Kim, M.; Cho, S. J.; Park, D.-W.; Jiang, H.; Lee, J.; Qiu, Y.; Zhou, W.; Cai, Z.; Gong, S.; Ma, Z. High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper. Nat. Commun. 2015, 6 (1). https://doi.org/10.1038/ncomms8170.Search in Google Scholar PubMed PubMed Central
51. Vilarinho, F.; Sanches Silva, A.; Vaz, M. F.; Farinha, J. P. Nanocellulose in Green Food Packaging. Critic. Rev. Food Sci. Nutr. 2017, 58 (9), 1526–1537. https://doi.org/10.1080/10408398.2016.1270254.Search in Google Scholar PubMed
52. Zhang, W.; Zhang, Y.; Cao, J.; Jiang, W. Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive. Int. J. Biol. Macromol. 2021, 166, 288–296. https://doi.org/10.1016/j.ijbiomac.2020.10.185.Search in Google Scholar PubMed
53. Klemm, D.; Ahrem, H.; Kramer, F.; Fried, W.; Wippermann, J.; Kinne, R. W. Bacterial Nanocellulose Hydrogels Designed as Bioartifcial Medical Implants. In Bacterial NanoCellulose; CRC Press eBooks: Boca Raton, USA, 2016; pp. 175–196.10.1201/b12936-10Search in Google Scholar
54. Yuen, J. D.; Shriver-Lake, L. C.; Walper, S. A.; Zabetakis, D.; Breger, J. C.; Stenger, D. A. Microbial Nanocellulose Printed Circuit Boards for Medical Sensing. Sensors 2020, 20 (7), 2047. https://doi.org/10.3390/s20072047.Search in Google Scholar PubMed PubMed Central
55. Foroughi, F.; Rezvani Ghomi, E.; Morshedi Dehaghi, F.; Borayek, R.; Ramakrishna, S. A Review on the Life Cycle Assessment of Cellulose: From Properties to the Potential of Making it a Low Carbon Material. Materials 2021, 14 (4), 714. https://doi.org/10.3390/ma14040714.Search in Google Scholar PubMed PubMed Central
56. Mandal, A.; Chakrabarty, D. Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and its Characterization. Carbohydr. Polym. 2011, 86 (3), 1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030.Search in Google Scholar
57. Li, J.; Klöpsch, R.; Nowak, S.; Kunze, M.; Winter, M.; Passerini, S. Investigations on Cellulose-Based High Voltage Composite Cathodes for Lithium Ion Batteries. J. Power Sources 2011, 196 (18), 7687–7691. https://doi.org/10.1016/j.jpowsour.2011.04.030.Search in Google Scholar
58. Li, W.; Yue, J.; Liu, S. Preparation of Nanocrystalline Cellulose via Ultrasound and its Reinforcement Capability for Poly (Vinyl Alcohol) Composites. Ultrason. Sonochem. 2012, 19 (3), 479–485. https://doi.org/10.1016/j.ultsonch.2011.11.007.Search in Google Scholar PubMed
59. Mautner, A.; Lee, K.-Y.; Tammelin, T.; Mathew, A. P.; Nedoma, A. J.; Li, K.; Bismarck, A. Cellulose Nanopapers as Tight Aqueous Ultra-filtration Membranes. React. Funct. Polym. 2015, 86, 209–214. https://doi.org/10.1016/j.reactfunctpolym.2014.09.014.Search in Google Scholar
60. Fortea-Verdejo, M.; Lee, K.-Y.; Zimmermann, T.; Bismarck, A. Upgrading Flax Nonwovens: Nanocellulose as Binder to Produce Rigid and Robust Flax Fibre Preforms. Compos. Part A: Appl. Sci. Manuf. 2016, 83, 63–71. https://doi.org/10.1016/j.compositesa.2015.11.021.Search in Google Scholar
61. Tan, M. Y.; Safanama, D.; Goh, S. S. ; Y. C.; Lim, J.; Lee, C.; Yeo, J. C. C.; Thitsartarn, W.; Srinivasan, M.; Fam, D. W. H. Concepts and Emerging Trends for Structural Battery Electrolytes. Chem.-An Asian J. 2022, 17 (21). https://doi.org/10.1002/asia.202200784.Search in Google Scholar PubMed
62. Budiman, B. A.; Saputro, A.; Rahardian, S.; Aziz, M.; Sambegoro, P.; Nurprasetio, I. P. Mechanical Damages in Solid Electrolyte Battery Due to Electrode Volume Changes. J. Energy Storage 2022, 52, 104810. https://doi.org/10.1016/j.est.2022.104810.Search in Google Scholar
63. Vishnugopi, B. S.; Kazyak, E.; Lewis, J. A.; Nanda, J.; McDowell, M. T.; Dasgupta, N. P.; Mukherjee, P. P. Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries. ACS Energy Lett. 2021, 6 (10), 3734–3749. https://doi.org/10.1021/acsenergylett.1c01352.Search in Google Scholar
64. Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-State Lithium Batteries: Safety and Prospects. eScience 2022, 2 (2). https://doi.org/10.1016/j.esci.2022.02.008.Search in Google Scholar
65. Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and Application. Carbon Resources Convers. 2018, 1 (1), 32–43. https://doi.org/10.1016/j.crcon.2018.05.004.Search in Google Scholar
66. Norizan, M. N.; Shazleen, S. S.; Alias, A. H.; Sabaruddin, F. A.; Asyraf, M. R. M.; Zainudin, E. S.; Abdullah, N.; Samsudin, M. S.; Kamarudin, S. H.; Norrrahim, M. N. F. Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials 2022, 12 (19), 3483. https://doi.org/10.3390/nano12193483.Search in Google Scholar PubMed PubMed Central
67. Jaffar, S. S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Saalah, S.; Lenggoro, W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. Membranes 2022, 12 (3), 287. https://doi.org/10.3390/membranes12030287.Search in Google Scholar PubMed PubMed Central
68. Yang, X.; Han, F.; Xu, C.; Jiang, S.; Huang, L.; Liu, L.; Xia, Z. Effects of Preparation Methods on the Morphology and Properties of Nanocellulose (NC) Extracted from Corn Husk. Ind. Crops Prod. 2017, 109, 241–247. https://doi.org/10.1016/j.indcrop.2017.08.032.Search in Google Scholar
69. Heinze, T.; Koschella, A. Solvents Applied in the Field of Cellulose Chemistry: A Mini Review. Polímeros 2005, 15 (2), 84–90. https://doi.org/10.1590/s0104-14282005000200005.Search in Google Scholar
70. Ass, B. A. P.; Belgacem, M. N.; Frollini, E. Mercerized Linters Cellulose: Characterization and Acetylation in N, N-Dimethylacetamide/Lithium Chloride. Carbohydr. Polym. 2006, 63 (1), 19–29. https://doi.org/10.1016/j.carbpol.2005.06.010.Search in Google Scholar
71. Zaman, A.; Huang, F.; Jiang, M.; Wei, W.; Zhou, Z. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy and Built Environ. 2020, 1 (1), 60–76. https://doi.org/10.1016/j.enbenv.2019.09.002.Search in Google Scholar
72. Nascimento, D. M.; Nunes, Y. L.; Figueirêdo, M. C. B.; de Azeredo, H. M. C.; Aouada, F. A.; Feitosa, J. P. A.; Rosa, M. F.; Dufresne, A. Nanocellulose Nanocomposite Hydrogels: Technological and Environmental Issues. Green Chem. 2018, 20 (11), 2428–2448. https://doi.org/10.1039/c8gc00205c.Search in Google Scholar
73. Klemm, D.; Cranston, E. D.; Fischer, D.; Gama, M.; Kedzior, S. A.; Kralisch, D.; Kramer, F.; Kondo, T.; Lindström, T.; Nietzsche, S.; Petzold-Welcke, K.; Rauchfuß, F. Nanocellulose as a Natural Source for Groundbreaking Applications in Materials Science: Today’s State. Mater. Today 2018, 21 (7), 720–748. https://doi.org/10.1016/j.mattod.2018.02.001.Search in Google Scholar
74. Chen, Y.; Gan, L.; Huang, J.; Dufresne, A. Reinforcing Mechanism of Cellulose Nanocrystals in Nanocomposites. Nanocellulose 2019, 201–249. https://doi.org/10.1002/9783527807437.ch7.Search in Google Scholar
75. Fornari, A.; Rossi, M.; Rocco, D.; Mattiello, L. A Review of Applications of Nanocellulose to Preserve and Protect Cultural Heritage Wood, Paintings, and Historical Papers. Appl. Sci. 2022, 12 (24), 12846. https://doi.org/10.3390/app122412846.Search in Google Scholar
76. Chu, Y.; Sun, Y.; Wu, W.; Xiao, H. Dispersion Properties of Nanocellulose: A Review. Carbohydr. Polym. 2020, 250, 116892. https://doi.org/10.1016/j.carbpol.2020.116892.Search in Google Scholar PubMed
77. Hubbe, M. A.; Ferrer, A.; Tyagi, P.; Yin, Y.; Salas, C.; Pal, L.; Rojas, O. J. Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources 2017, 12 (1). https://doi.org/10.15376/biores.12.1.2143-2233.Search in Google Scholar
78. Kumar, V.; Bollström, R.; Yang, A.; Chen, Q.; Chen, G.; Salminen, P.; Bousfield, D.; Toivakka, M. Comparison of Nano- and Microfibrillated Cellulose Films. Cellulose 2014, 21 (5), 3443–3456. https://doi.org/10.1007/s10570-014-0357-5.Search in Google Scholar
79. Mukanova, A.; Jetybayeva, A.; Myung, S. T.; Kim, S.; Bakenov, Z. A Mini-Review on the Development of Si-Based Thin Film Anodes for Li-Ion Batteries. Mater. Today Energy 2018, 9, 49–66. https://doi.org/10.1016/j.mtener.2018.05.004.Search in Google Scholar
80. Velmurugan, R.; Subramanian, B. Physicochemical Approaches for Thin Film Energy Storage Devices Through PVD Techniques. In Energy Storage Devices; IntechOpen eBooks: Rijeka, Croatia, 2021.10.5772/intechopen.99473Search in Google Scholar
81. Song, M.-K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. Nanostructured Electrodes for Lithium-Ion and Lithium-Air Batteries: The Latest Developments, Challenges, and Perspectives. Mater. Sci. Eng.: R: Rep. 2011, 72 (11), 203–252. https://doi.org/10.1016/j.mser.2011.06.001.Search in Google Scholar
82. Gannett, C. N.; Melecio-Zambrano, L.; Theibault, M. J.; Peterson, B. M.; Fors, B. P.; Abruña, H. D. Organic Electrode Materials for Fast-Rate, High-Power Battery Applications. Materials Rep.: Energy 2021, 1 (1), 100008. https://doi.org/10.1016/j.matre.2021.01.003.Search in Google Scholar
83. Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-Dependent Fracture of Silicon Nanoparticles during Lithiation. ACS Nano 2012, 6 (2), 1522–1531. https://doi.org/10.1021/nn204476h.Search in Google Scholar PubMed
84. Singh, P.; Sachdeva, A.; Bhargava, C. Polymer Electrolyte a Novel Material for Electrochemical Devices: A Review. J. Phys. Conf. Ser. 2022, 2327 (1), 012021. https://doi.org/10.1088/1742-6596/2327/1/012021.Search in Google Scholar
85. Grewal, M. S.; Kisu, K.; Orimo, S.; Yabu, H. Increasing the Ionic Conductivity and Lithium-Ion Transport of Photo-Cross-Linked Polymer with Hexagonal Arranged Porous Film Hybrids. iScience 2022, 25 (9), 104910. https://doi.org/10.1016/j.isci.2022.104910.Search in Google Scholar PubMed PubMed Central
86. Sundaram, N. T. K.; Subramania, A. Microstructure of PVdF-Co-HFP Based Electrolyte Prepared by Preferential Polymer Dissolution Process. J. Membr. Sci. 2007, 289 (1-2), 1–6. https://doi.org/10.1016/j.memsci.2006.12.002.Search in Google Scholar
87. Sabrina, Q.; Ratri, C. R.; Hardiansyah, A.; Lestariningsih, T.; Subhan, A.; Rifai, A.; Yudianti, R.; Uyama, H. Preparation and Characterization of Nanofibrous Cellulose as Solid Polymer Electrolyte for Lithium-Ion Battery Applications. RSC Adv. 2021, 11 (37), 22929–22936. https://doi.org/10.1039/d1ra03480d.Search in Google Scholar PubMed PubMed Central
88. Shi, Q.; Yu, M.; Zhou, X.; Yan, Y.; Wan, C. Structure and Performance of Porous Polymer Electrolytes Based on P(VDF-HFP) for Lithium Ion Batteries. J. Power Sources 2002, 103 (2), 286–292. https://doi.org/10.1016/s0378-7753(01)00868-0.Search in Google Scholar
89. Pan, R.; Wang, Z.; Sun, R.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Thickness Difference Induced Pore Structure Variations in Cellulosic Separators for Lithium-Ion Batteries. Cellulose 2017, 24 (7), 2903–2911. https://doi.org/10.1007/s10570-017-1312-z.Search in Google Scholar
90. Chua, K. Y.; Azzahari, A. D.; Abouloula, C. N.; Sonsudin, F.; Shahabudin, N.; Yahya, R. Cellulose-Based Polymer Electrolyte Derived from Waste Coconut Husk: Residual Lignin as a Natural Plasticizer. J. Polym. Res. 2020, 27 (5). https://doi.org/10.1007/s10965-020-02110-8.Search in Google Scholar
91. Thomas, B.; Raj, M. C.; B, A. K.; H, R. M.; Joy, J.; Moores, A.; Drisko, G. L.; Sanchez, C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem. Rev. 2018, 118 (24), 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627.Search in Google Scholar PubMed
92. Patil, T. V.; Patel, D. K.; Dutta, S. D.; Ganguly, K.; Santra, T. S.; Lim, K.-T. Nanocellulose, a Versatile Platform: From the Delivery of Active Molecules to Tissue Engineering Applications. Bioact. Mater. 2022, 9, 566–589. https://doi.org/10.1016/j.bioactmat.2021.07.006.Search in Google Scholar PubMed PubMed Central
93. Janeni, J.; Adassooriya, N. M. Nanocellulose Biopolymer-Based Biofilms: Applications and Challenges. Biopolym.-Based Nano Films 2021, 43–62. https://doi.org/10.1016/b978-0-12-823381-8.00011-9.Search in Google Scholar
94. Tahir, D.; Karim, A.; Hu, H.; Naseem, S.; Rehan, M.; Ahmad, M.; Zhang, M. Sources, Chemical Functionalization, and Commercial Applications of Nanocellulose and Nanocellulose-Based Composites: A Review. Polymers 2022, 14 (21), 4468. https://doi.org/10.3390/polym14214468.Search in Google Scholar PubMed PubMed Central
95. Pradhan, D.; Jaiswal, A. K.; Jaiswal, S. Emerging Technologies for the Production of Nanocellulose from Lignocellulosic Biomass. Carbohydr. Polym. 2022, 285, 119258. https://doi.org/10.1016/j.carbpol.2022.119258.Search in Google Scholar PubMed
96. Tang, Y.; Yang, S.; Zhang, N.; Zhang, J. Preparation and Characterization of Nanocrystalline Cellulose via Low-Intensity Ultrasonic-Assisted Sulfuric Acid Hydrolysis. Cellulose 2013, 21 (1), 335–346. https://doi.org/10.1007/s10570-013-0158-2.Search in Google Scholar
97. Rusli, R.; Shanmuganathan, K.; Rowan, S. J.; Weder, C.; Eichhorn, S. J. Stress Transfer in Cellulose Nanowhisker Composites–Influence of Whisker Aspect Ratio and Surface Charge. Biomacromolecules 2011, 12 (4), 1363–1369. https://doi.org/10.1021/bm200141x.Search in Google Scholar PubMed
98. Calle-Gil, R.; Castillo-Martínez, E.; Carretero-González, J. Cellulose Nanocrystals in Sustainable Energy Systems. Adv. Sustain. Syst. 2022, 6 (4). https://doi.org/10.1002/adsu.202100395.Search in Google Scholar
99. Hsu, H. H.; Zhong, W. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review. Membranes 2019, 9 (6), 74. https://doi.org/10.3390/membranes9060074.Search in Google Scholar PubMed PubMed Central
100. Laezza, A.; Celeste, A.; Curcio, M.; Teghil, R.; Bonis, A. D.; Brutti, S.; Pepe, A.; Bochicchio, B. Cellulose Nanocrystals as Additives in Electrospun Biocompatible Separators for Aprotic Lithium-Ion Batteries. ACS Appl. Polym. Mater. 2023, 5 (2), 1453–1463. https://doi.org/10.1021/acsapm.2c01956.Search in Google Scholar PubMed PubMed Central
101. Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. N. A Tiny Fiber with Huge Applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. https://doi.org/10.1016/j.copbio.2016.01.002.Search in Google Scholar PubMed
102. Nasir, M.; Hashim, R.; Sulaiman, O.; Asim, M. N. Cellul.-Reinforc. Nanofibre Compos. 2017, 261–276. https://doi.org/10.1016/b978-0-08-100957-4.00011-5.Search in Google Scholar
103. Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. Methods for Extraction of Nanocellulose from Various Sources. Handb. Nanocell. Cellul. Nanocompos. 2017, 1–49. https://doi.org/10.1002/9783527689972.ch1.Search in Google Scholar
104. Lunardi, V. B.; Soetaredjo, F. E.; Putro, J. N.; Santoso, S. P.; Yuliana, M.; Sunarso, J.; Ju, Y.-H.; Ismadji, S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and its Application as the Drug Carriers. Polymers 2021, 13 (13), 2052. https://doi.org/10.3390/polym13132052.Search in Google Scholar PubMed PubMed Central
105. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated Cellulose – its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydr. Polym. 2012, 90 (2), 735–764. https://doi.org/10.1016/j.carbpol.2012.05.026.Search in Google Scholar PubMed
106. Serra, A.; González, I.; Oliver-Ortega, H.; Tarrès, Q.; Delgado-Aguilar, M.; Mutjé, P. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost. Polymers 2017, 9 (11), 557. https://doi.org/10.3390/polym9110557.Search in Google Scholar PubMed PubMed Central
107. Chun, S.-J.; Choi, E.-S.; Lee, E.-H.; Kim, J. H.; Lee, S.-Y.; Lee, S.-Y. Eco-Friendly Cellulose Nanofiber Paper-Derived Separator Membranes Featuring Tunable Nanoporous Network Channels for Lithium-Ion Batteries. J. Mater. Chem. 2012, 22 (32), 16618. https://doi.org/10.1039/c2jm32415f.Search in Google Scholar
108. Lu, H.; Guccini, V.; Kim, H.; Salazar-Alvarez, G.; Lindbergh, G.; Cornell, A. Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9 (43), 37712–37720. https://doi.org/10.1021/acsami.7b10307.Search in Google Scholar PubMed
109. Li, R.; Tian, D.; Chen, L.; Zhuang, B.; Fu, H.; Li, Q.; Yu, L.; Ling, Y. The Application of Cellulose Nanofibrils in Energy Systems. Batteries 2023, 9 (8), 399. https://doi.org/10.3390/batteries9080399.Search in Google Scholar
110. Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; Hu, L. Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Adv. Energy Mater. 2018, 8 (33), 1802398. https://doi.org/10.1002/aenm.201802398.Search in Google Scholar
111. Le, H. T. T.; Liem, N. T.; Giang, N. C.; Hoang, P. H.; Minh Phuon, N. T. Improving Electrochemical Performance of Hybrid Electrode Materials by a Composite of Nanocellulose, Reduced Oxide Graphene and Polyaniline. RSC Adv. 2023, 13 (32), 22375–22388. https://doi.org/10.1039/d3ra03172a.Search in Google Scholar PubMed PubMed Central
112. Abba, M.; Abdullahi, M.; Md Nor, M. H.; Chong, C. S.; Ibrahim, Z. Isolation and Characterisation of Locally Isolated Gluconacetobacter Xylinus BCZM Sp. With Nanocellulose Producing Potentials. IET Nanobiotechnol. 2018, 12 (1), 52–56. https://doi.org/10.1049/iet-nbt.2017.0024.Search in Google Scholar
113. Gan, P. G.; Sam, S. T.; Abdullah, M. F. B.; Omar, M. F. Thermal Properties of Nanocellulose-Reinforced Composites: A Review. J. Appl. Polym. Sci. 2019, 137 (11), 48544. https://doi.org/10.1002/app.48544.Search in Google Scholar
114. Huang, Y.; Zhu, C.; Yang, J.; Nie, Y.; Chen, C.; Sun, D. Recent Advances in Bacterial Cellulose. Cellulose 2013, 21 (1), 1–30. https://doi.org/10.1007/s10570-013-0088-z.Search in Google Scholar
115. Dias, G. M. V.; Müller, D.; Wesling, B. N.; Bernardes, J. C.; Hotza, D.; Rambo, C. R. Enhancing Specific Capacitance and Cyclic Stability through Incorporation of MnO2 into Bacterial Nanocellulose/PPy·CuCl2 Flexible Electrodes. Energy Technol. 2019, 7 (9), 1900328. https://doi.org/10.1002/ente.201900328.Search in Google Scholar
116. Lokhande, P. E.; Singh, P. P.; Vo, D.-V. N.; Kumar, D.; Balasubramanian, K.; Mubayi, A.; Srivastava, A.; Sharma, A. Bacterial Nanocellulose: Green Polymer Materials for High Performance Energy Storage Applications. J. Environ. Chem. Eng. 2022, 10 (5), 108176. https://doi.org/10.1016/j.jece.2022.108176.Search in Google Scholar
117. Çakar, F.; Özer, I.; Aytekin, A. Ö.; Şahin, F. Improvement Production of Bacterial Cellulose by Semi-continuous Process in Molasses Medium. Carbohydr. Polym. 2014, 106, 7–13. https://doi.org/10.1016/j.carbpol.2014.01.103.Search in Google Scholar PubMed
118. Antony, T.; Cherian, R. M.; Varghese, R. T.; Kargarzadeh, H.; Ponnamma, D.; Chirayil, C. J.; Thomas, S. Sustainable Green Packaging Based on Nanocellulose Composites-Present and Future. Cellulose 2023, 30 (17), 10559–10593. https://doi.org/10.1007/s10570-023-05537-6.Search in Google Scholar
119. Schroers, M.; Kokil, A.; Weder, C. Solid Polymer Electrolytes Based on Nanocomposites of Ethylene Oxide-Epichlorohydrin Copolymers and Cellulose Whiskers. J. Appl. Polym. Sci. 2004, 93 (6), 2883–2888. https://doi.org/10.1002/app.20870.Search in Google Scholar
120. Samir, M. A. S. A.; Alloin, F.; Sanchez, J.-Y.; Dufresne, A. Nanocomposite Polymer Electrolytes Based on Poly(Oxyethylene) and Cellulose Whiskers. Polímeros 2005, 15 (2), 109–113. https://doi.org/10.1590/s0104-14282005000200009.Search in Google Scholar
121. Nair, J. R.; Bella, F.; Angulakshmi, N.; Stephan, A. M.; Gerbaldi, C. Nanocellulose-Laden Composite Polymer Electrolytes for High Performing Lithium–Sulphur Batteries. Energy Storage Mater. 2016, 3, 69–76. https://doi.org/10.1016/j.ensm.2016.01.008.Search in Google Scholar
122. Wang, C. G.; Yuan, W. N.; Lu, N. Q. Studies on Preparation and Properties of Novel Gel Polymer Electrolyte. Adv. Mater. Res. 2010, 123–125, 226–230. https://doi.org/10.4028/www.scientific.net/amr.123-125.226.Search in Google Scholar
123. Naceur, A. C.; Rizwan, M.; Selvanathan, V.; Abdullah, C. I.; Hassan, A.; Yahya, R.; Oueriagli, A. A Novel Application for Oil Palm Empty Fruit Bunch: Extraction and Modification of Cellulose for Solid Polymer Electrolyte. Ionics 2018, 24 (12), 3827–3836. https://doi.org/10.1007/s11581-018-2558-7.Search in Google Scholar
124. Macías-Almazán, A.; Lois-Correa, J. A.; Domínguez-Crespo, M. A.; López-Oyama, A. B.; Torres-Huerta, A. M.; Brachetti-Sibaja, S. B.; Rodríguez-Salazar, A. E. Influence of Operating Conditions on Proton Conductivity of Nanocellulose Films Using Two Agroindustrial Wastes: Sugarcane Bagasse and Pinewood Sawdust. Carbohydr. Polym. 2020, 238, 116171. https://doi.org/10.1016/j.carbpol.2020.116171.Search in Google Scholar PubMed
125. Hadad, S.; Hamrahjoo, M.; Dehghani, E.; Salami-Kalajahi, M.; Eliseeva, S. N.; Moghaddam, A. R.; Roghani-Mamaqani, H. Cellulose-Based Solid and Gel Polymer Electrolytes with Super High Ionic Conductivity and Charge Capacity for High Performance Lithium Ion Batteries. Sustain. Mater. Technol. 2022, 33, e00503. https://doi.org/10.1016/j.susmat.2022.e00503.Search in Google Scholar
126. Lalia, B. S.; Samad, Y. A.; Hashaikeh, R. Nanocrystalline-Cellulose-Reinforced Poly(Vinylidenefluoride-Co-Hexafluoropropylene) Nanocomposite Films as a Separator for Lithium Ion Batteries. J. Appl. Polym. Sci. 2012, 126 (S1), E442–E448. https://doi.org/10.1002/app.36783.Search in Google Scholar
127. Pan, R.; Xu, X.; Sun, R.; Wang, Z.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Nanocellulose Modified Polyethylene Separators for Lithium Metal Batteries. Small 2018, 14 (21), 1704371. https://doi.org/10.1002/smll.201704371.Search in Google Scholar PubMed
128. Zhou, S.; Nyholm, L.; Strømme, M.; Wang, Z. Cladophora Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Acc. Chem. Res. 2019, 52 (8), 2232–2243. https://doi.org/10.1021/acs.accounts.9b00215.Search in Google Scholar PubMed
129. Cheng, C.; Yang, R.; Wang, Y.; Fu, D.; Sheng, J.; Guo, X. A Bacterial Cellulose-Based Separator with Tunable Pore Size for Lithium-Ion Batteries. Carbohydr. Polym. 2023, 304, 120489. https://doi.org/10.1016/j.carbpol.2022.120489.Search in Google Scholar PubMed
130. Song, P.; Shen, X.; He, X.; Feng, K.; Kong, L.; Ji, Z.; Zhai, L.; Zhu, G.; Zhang, D. Cellulose-Derived Nitrogen-Doped Hierarchically Porous Carbon for High-Performance Supercapacitors. Cellulose 2018, 26 (2), 1195–1208. https://doi.org/10.1007/s10570-018-2115-6.Search in Google Scholar
131. Li, Y.; Xia, Z.; Gong, Q.; Liu, X.; Yang, Y.; Chen, C.; Qian, C. Green Synthesis of Free Standing Cellulose/Graphene Oxide/Polyaniline Aerogel Electrode for High-Performance Flexible All-Solid-State Supercapacitors. Nanomaterials 2020, 10 (8), 1546. https://doi.org/10.3390/nano10081546.Search in Google Scholar PubMed PubMed Central
132. Jiang, L.; Li, L.; Luo, S.; Zhang, Z.; Wu, Y.; Qing, Y. Bamboo Derived Cellulose Nanofibers for High-Performance Ni-Zn Batteries: Enhancing Rate Capability by Cobalt-Doping. Ind. Crops Prod. 2023, 201, 116924. https://doi.org/10.1016/j.indcrop.2023.116924.Search in Google Scholar
133. Wang, L.; Schnepp, Z.; Titirici, M. M. Rice Husk-Derived Carbon Anodes for Lithium Ion Batteries. J. Mater. Chem. A 2013, 1 (17), 5269. https://doi.org/10.1039/c3ta10650k.Search in Google Scholar
134. Yi, H.; Ma, Y.; Zhang, S.; Na, B.; Zeng, R.; Zhang, Y.; Lin, C. Robust Aqueous Zn-Ion Fiber Battery Based on High-Strength Cellulose Yarns. ACS Sustain. Chem. Eng. 2019, 7 (23), 18894–18900. https://doi.org/10.1021/acssuschemeng.9b04188.Search in Google Scholar
135. Thiangtham, S.; Runt, J.; Manuspiya, H. Sulfonation of Dialdehyde Cellulose Extracted from Sugarcane Bagasse for Synergistically Enhanced Water Solubility. Carbohydr. Polym. 2019, 208, 314–322. https://doi.org/10.1016/j.carbpol.2018.12.080.Search in Google Scholar PubMed
136. Hidayat, S.; Ardiaksa, P.; Riveli, N.; Rahayu, I. Synthesis and Characterization of Carboxymethyl Cellulose (CMC) from Salak-Fruit Seeds as Anode Binder for Lithium-Ion Battery. J. Phys.: Conf. Ser. 2018, 1080, 012017. https://doi.org/10.1088/1742-6596/1080/1/012017.Search in Google Scholar
137. Bottoni, L.; Darjazi, H.; Sbrascini, L.; Staffolani, A.; Gabrielli, S.; Pastore, G.; Tombesi, A.; Nobili, F. Electrochemical Characterization of Charge Storage at Anodes for Sodium-Ion Batteries Based on Corncob Waste-Derived Hard Carbon and Binder. ChemElectroChem 2023, 10 (8). https://doi.org/10.1002/celc.202201117.Search in Google Scholar
138. Gwon, H.; Hong, J.; Kim, H.; Seo, D.-H.; Jeon, S.; Kang, K. Recent Progress on Flexible Lithium Rechargeable Batteries. Energy Environ. Sci. 2014, 7 (2), 538–551. https://doi.org/10.1039/c3ee42927j.Search in Google Scholar
139. Foreman, E.; Zakri, W.; Hossein Sanatimoghaddam, M.; Modjtahedi, A.; Pathak, S.; Kashkooli, A. G.; Garafolo, N. G.; Farhad, S. A Review of Inactive Materials and Components of Flexible Lithium-Ion Batteries. Adv. Sustain. Syst. 2017, 1 (11), 1700061. https://doi.org/10.1002/adsu.201700061.Search in Google Scholar
140. Rakhmatov, D.; Vrudhula, S. An Analytical High-Level Battery Model for Use in Energy Management of Portable Electronic Systems. In IEEE/ACM International Conference on Computer Aided Design 2002, IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281); IEEE (Institute of Electrical and Electronics Engineers): San Jose, CA, USA.Search in Google Scholar
141. Shu, C.; Wang, J.; Long, J.; Liu, H.; Dou, S. Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Adv. Mater. 2019, 31 (15), 1804587. https://doi.org/10.1002/adma.201804587.Search in Google Scholar PubMed
142. Arote, S. A. Fundamentals and Perspectives of Lithium-ion Batteries. In Lithium-Ion and Lithium -Sulfur Batteries; IOP Publishing eBooks: Bristol, England, 2022; pp. 1–26.10.1088/978-0-7503-4881-2ch1Search in Google Scholar
143. Nzereogu, P. U.; Omah, A. D.; Ezema, F. I.; Iwuoha, E. I.; Nwanya, A. C. Anode Materials for Lithium-Ion Batteries: A Review. Appl. Surf. Sci. Adv. 2022, 9, 100233. https://doi.org/10.1016/j.apsadv.2022.100233.Search in Google Scholar
144. Hang, M. N.; Gunsolus, I. L.; Wayland, H. A.; Melby, E. S.; Mensch, A. C.; Hurley, K. R.; Pedersen, J. A.; Haynes, C. L.; Hamers, R. J. Impact of Nanoscale Lithium Nickel Manganese Cobalt Oxide (NMC) on the Bacterium Shewanella Oneidensis MR-1. Chem. Mater. 2016, 28 (4), 1092–1100. https://doi.org/10.1021/acs.chemmater.5b04505.Search in Google Scholar
145. Wang, Y.; Wang, E.; Zhang, X.; Yu, H. High-Voltage “Single-Crystal” Cathode Materials for Lithium-Ion Batteries. Energy Fuels 2021, 35 (3), 1918–1932. https://doi.org/10.1021/acs.energyfuels.0c03608.Search in Google Scholar
146. Fu, W.; Wang, Y.; Kong, K. Y.; Kim, D. Y.; Wang, F.; Yushin, G. Materials and Processing of Lithium-Ion Battery Cathodes. Nanoenergy Adv. 2023, 3 (2), 138–154. https://doi.org/10.3390/nanoenergyadv3020008.Search in Google Scholar
147. Yang, M.; Hou, J. Membranes in Lithium Ion Batteries. Membranes 2012, 2 (3), 367–383. https://doi.org/10.3390/membranes2030367.Search in Google Scholar PubMed PubMed Central
148. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5 (9), 2326–2352. https://doi.org/10.1016/j.chempr.2019.05.009.Search in Google Scholar
149. Zhang, W.; Tu, Z.; Qian, J.; Choudhury, S.; Archer, L. A.; Lu, Y. Design Principles of Functional Polymer Separators for High-Energy, Metal-Based Batteries. Small 2017, 14 (11). https://doi.org/10.1002/smll.201703001.Search in Google Scholar PubMed
150. Barbosa, J. C.; Dias, J. P.; Lanceros-Méndez, S.; Costa, C. M. Recent Advances in Poly(Vinylidene Fluoride) and its Copolymers for Lithium-Ion Battery Separators. Membranes 2018, 8 (3), 45. https://doi.org/10.3390/membranes8030045.Search in Google Scholar PubMed PubMed Central
151. Costa, C. M.; Lee, Y.-H.; Kim, J.-H.; Lee, S.-Y.; Lanceros-Méndez, S. Recent Advances on Separator Membranes for Lithium-Ion Battery Applications: From Porous Membranes to Solid Electrolytes. Energy Storage Mater. 2019, 22, 346–375. https://doi.org/10.1016/j.ensm.2019.07.024.Search in Google Scholar
152. Deng, W.; Zhu, W.; Zhou, X.; Liu, Z. Graphene Nested Porous Carbon Current Collector for Lithium Metal Anode with Ultrahigh Areal Capacity. Energy Storage Mater. 2018, 15, 266–273. https://doi.org/10.1016/j.ensm.2018.05.005.Search in Google Scholar
153. Sealed Nickel-Cadmium Cells and Batteries. Rechargeable Batteries Appl. Handb. 1998, 35–151. https://doi.org/10.1016/b978-075067006-7/50004-8 (accessed 2023-09).Search in Google Scholar
154. Abruña, H. D.; Kiya, Y.; Henderson, J. C. Batteries and Electrochemical Capacitors. Phys. Today 2008, 61 (12), 43–47. https://doi.org/10.1063/1.3047681.Search in Google Scholar
155. Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci. 2009, 19 (3), 291–312. https://doi.org/10.1016/j.pnsc.2008.07.014.Search in Google Scholar
156. Skyllas-Kazacos, M.; McCann, J. C.; Li, Y.; Bao, J.; Tang, A. The Mechanism and Modelling of Shunt Current in the Vanadium Redox Flow Battery. ChemistrySelect 2016, 1 (10), 2249–2256. https://doi.org/10.1002/slct.201600432.Search in Google Scholar
157. Cholewinski, A.; Si, P.; Uceda, M.; Pope, M.; Zhao, B. Polymer Binders: Characterization and Development toward Aqueous Electrode Fabrication for Sustainability. Polymers 2021, 13 (4), 631. https://doi.org/10.3390/polym13040631.Search in Google Scholar PubMed PubMed Central
158. Das, D.; Manna, S.; Puravankara, S. Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries–A Review. Batteries 2023, 9 (4), 193. https://doi.org/10.3390/batteries9040193.Search in Google Scholar
159. Biensan, P.; Simon, B.; Pérès, J. P.; de Guibert, A.; Broussely, M.; Bodet, J. M.; Perton, F. On Safety of Lithium-Ion Cells. J. Power Sources 1999, 81–82, 906–912. https://doi.org/10.1016/s0378-7753(99)00135-4.Search in Google Scholar
160. Li, J.; Daniel, C.; Wood, D. Materials Processing for Lithium-Ion Batteries. J. Power Sources 2011, 196 (5), 2452–2460. https://doi.org/10.1016/j.jpowsour.2010.11.001.Search in Google Scholar
161. Zhong, X.; Han, J.; Chen, L.; Liu, W.; Jiao, F.; Zhu, H.; Qin, W. Binding Mechanisms of PVDF in Lithium Ion Batteries. Appl. Surf. Sci. 2021, 553, 149564. https://doi.org/10.1016/j.apsusc.2021.149564.Search in Google Scholar
162. Kumar Prajapati, A.; Bhatnagar, A. A Review on Anode Materials for Lithium/Sodium-Ion Batteries. J. Energy Chem. 2023, 83, 509–540. https://doi.org/10.1016/j.jechem.2023.04.043.Search in Google Scholar
163. Lu, W.; Wang, Z.; Zhong, S. Sodium-Ion Battery Technology: Advanced Anodes, Cathodes and Electrolytes. J. Phys.: Conf. Ser. 2021, 2109 (1), 012004. https://doi.org/10.1088/1742-6596/2109/1/012004.Search in Google Scholar
164. Eshetu, G. G.; Zhang, H.; Judez, X.; Adenusi, H.; Armand, M.; Passerini, S.; Figgemeier, E. Production of High-Energy Li-Ion Batteries Comprising Silicon-Containing Anodes and Insertion-type Cathodes. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-25334-8.Search in Google Scholar PubMed PubMed Central
165. Xiao, C.; He, P.; Ren, J.; Yue, M.; Huang, Y.; He, X. Walnut-structure Si–G/c Materials with High Coulombic Efficiency for Long-Life Lithium Ion Batteries. RSC Adv. 2018, 8 (48), 27580–27586. https://doi.org/10.1039/c8ra04804e.Search in Google Scholar PubMed PubMed Central
166. Jiao, M.; Wang, Y.; Ye, C.; Wang, C.; Zhang, W.; Liang, C. High-Capacity SiOx (0≤x≤2) as Promising Anode Materials for Next-Generation Lithium-Ion Batteries. J. Alloys Compd. 2020, 842, 155774. https://doi.org/10.1016/j.jallcom.2020.155774.Search in Google Scholar
167. Deng, D. Li-Ion Batteries: Basics, Progress, and Challenges. Energy Sci. Eng. 2015, 3 (5), 385–418. https://doi.org/10.1002/ese3.95.Search in Google Scholar
168. Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D.; Winter, M.; Ein-Eli, Y.; Janek, J. Fast Charging of Lithium-Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater. 2021, 11 (33), 2101126. https://doi.org/10.1002/aenm.202101126.Search in Google Scholar
169. Ko, M.; Chae, S.; Cho, J. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries. ChemElectroChem 2015, 2 (11), 1645–1651. https://doi.org/10.1002/celc.201500254.Search in Google Scholar PubMed PubMed Central
170. Lin, C.; Tang, A.; Wu, N.; Xing, J. Electrochemical and Mechanical Failure of Graphite-Based Anode Materials in Li-Ion Batteries for Electric Vehicles. J. Chem. 2016, 2016, 1–7. https://doi.org/10.1155/2016/2940437.Search in Google Scholar
171. Zhong, B.; Liu, C.; Xiong, D.; Cai, J.; Li, J.; Li, D.; Cao, Z.; Song, B.; Deng, W.; Peng, H.; Hou, H.; Zou, G.; Ji, X. Biomass-Derived Hard Carbon for Sodium-Ion Batteries: Basic Research and Industrial Application. ACS Nano 2024, 18 (26), 16468–16488. https://doi.org/10.1021/acsnano.4c03484.Search in Google Scholar PubMed
172. Feng, A.; Zhu, X.; Chen, Y.; Liu, P.; Han, F.; Zu, Y.; Li, X.; Bi, P. Functional Biomass-Derived Materials for the Development of Sustainable Batteries. ChemElectroChem 2024, 11 (13). https://doi.org/10.1002/celc.202400086.Search in Google Scholar
173. Tao, S. W.; Cowin, P. I.; Lan, R. Novel Anode Materials for Solid Oxide Fuel Cells. In Functional Materials for Sustainable Energy Applications-Woodhead Publishing Series in Energy; Elsevier eBooks: Amsterdam, Netherlands, 2012; pp. 445–477.10.1533/9780857096371.3.445Search in Google Scholar
174. Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review. Prog. Mater. Sci. 2015, 72, 141–337. https://doi.org/10.1016/j.pmatsci.2015.01.001.Search in Google Scholar
175. Chelmehsara, M. E.; Mahmoudimehr, J. Techno-Economic Comparison of Anode-Supported, Cathode-Supported, and Electrolyte-Supported SOFCs. Int. J. Hydrogen Energy 2018, 43 (32), 15521–15530. https://doi.org/10.1016/j.ijhydene.2018.06.114.Search in Google Scholar
176. Idris, M. O.; Guerrero-Barajas, C.; Kim, H.-C.; Yaqoob, A. A.; Ibrahim, M. N. Scalability of Biomass-Derived Graphene Derivative Materials as Viable Anode Electrode for a Commercialized Microbial Fuel Cell: A Systematic Review. Chin. J. Chem. Eng. 2023, 55, 277–292. https://doi.org/10.1016/j.cjche.2022.05.009.Search in Google Scholar
177. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18 (5), 252–264. https://doi.org/10.1016/j.mattod.2014.10.040.Search in Google Scholar
178. Nirmale, T. C.; Kale, B. B.; Varma, A. J. A Review on Cellulose and Lignin Based Binders and Electrodes: Small Steps towards a Sustainable Lithium Ion Battery. Int. J. Biol. Macromol. 2017, 103, 1032–1043. https://doi.org/10.1016/j.ijbiomac.2017.05.155.Search in Google Scholar PubMed
179. Wang, B.; Li, X.; Luo, B.; Yang, J.; Wang, X.; Song, Q.; Chen, S.; Zhi, L. Pyrolyzed Bacterial Cellulose: A Versatile Support for Lithium Ion Battery Anode Materials. Small 2013, 9 (14), 2399–2404. https://doi.org/10.1002/smll.201300692.Search in Google Scholar PubMed
180. Zhang, Z.; Zhang, J.; Zhao, X.; Yang, F. Core-Sheath Structured Porous Carbon Nanofiber Composite Anode Material Derived from Bacterial Cellulose/Polypyrrole as an Anode for Sodium-Ion Batteries. Carbon 2015, 95, 552–559. https://doi.org/10.1016/j.carbon.2015.08.069.Search in Google Scholar
181. Wei, L.; Chen, C.; Hou, Z.; Wei, H. Poly (Acrylic Acid Sodium) Grafted Carboxymethyl Cellulose as a High Performance Polymer Binder for Silicon Anode in Lithium Ion Batteries. Sci. Rep. 2016, 6 (1). https://doi.org/10.1038/srep19583.Search in Google Scholar PubMed PubMed Central
182. Hu, Z.; Xu, X.; Wang, X.; Yu, K.; Hou, J.; Liang, C. SnO2@Rice Husk Cellulose Composite as an Anode for Superior Lithium Ion Batteries. New J. Chem. 2019, 43 (22), 8755–8760. https://doi.org/10.1039/c9nj01435g.Search in Google Scholar
183. Tran, Q. N.; Kim, I. T.; Park, S.; Choi, H. W.; Park, S. J. SnO2 Nanoflower–Nanocrystalline Cellulose Composites as Anode Materials for Lithium-Ion Batteries. Materials 2020, 13 (14), 3165. https://doi.org/10.3390/ma13143165.Search in Google Scholar PubMed PubMed Central
184. Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; Michael; Inkson, B. J.; Fleck, N. A. Mechanical Properties of Cathode Materials for Lithium-Ion Batteries. Joule 2022, 6 (5), 984–1007. https://doi.org/10.1016/j.joule.2022.04.001.Search in Google Scholar
185. Feng, J.; Luo, S.; Cai, K.; Yan, S.; Wang, Q.; Zhang, Y.; Liu, X. Research Progress of Tunnel-type Sodium Manganese Oxide Cathodes for SIBs. Chin. Chem. Lett. 2022, 33 (5), 2316–2326. https://doi.org/10.1016/j.cclet.2021.09.077.Search in Google Scholar
186. Kaur, G.; Gates, B. D. Review–Surface Coatings for Cathodes in Lithium Ion Batteries: From Crystal Structures to Electrochemical Performance. J. Electrochem. Soc. 2022, 169 (4), 043504. https://doi.org/10.1149/1945-7111/ac60f3.Search in Google Scholar
187. Fernandez-Diaz, L.; Castillo, J.; Sasieta-Barrutia, E.; Arnaiz, M.; Cabello, M.; Judez, X.; Terry, A.; Otaegui, L.; Morant-Miñana, M. C.; Villaverde, A. Mixing Methods for Solid State Electrodes: Techniques, Fundamentals, Recent Advances, and Perspectives. Chem. Eng. J. 2023, 464, 142469. https://doi.org/10.1016/j.cej.2023.142469.Search in Google Scholar
188. Li, Y.; Zeng (Ray), Q.; Gentle, I. R.; Wang, D.-W. Carboxymethyl Cellulose Binders Enable High-Rate Capability of Sulfurized Polyacrylonitrile Cathodes for Li–S Batteries. J. Mater. Chem. A 2017, 5 (11), 5460–5465. https://doi.org/10.1039/c7ta00040e.Search in Google Scholar
189. Qiu, L.; Shao, Z.; Wang, D.; Wang, W.; Wang, F.; Wang, J. Enhanced Electrochemical Properties of LiFePO4 (LFP) Cathode Using the Carboxymethyl Cellulose Lithium (CMC-Li) as Novel Binder in Lithium-Ion Battery. Carbohydr. Polym. 2014, 111, 588–591. https://doi.org/10.1016/j.carbpol.2014.05.027.Search in Google Scholar PubMed
190. Heidari, A. A.; Mahdavi, H. Recent Development of Polyolefin-Based Microporous Separators for Li-Ion Batteries: A Review. Chem. Record (New York, N.Y.) 2020, 20 (6), 570–595. https://doi.org/10.1002/tcr.201900054.Search in Google Scholar PubMed
191. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-Ion Batteries. Energy Environ. Sci. 2014, 7 (12), 3857–3886. https://doi.org/10.1039/c4ee01432d.Search in Google Scholar
192. Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries. Electrochem. Energy Rev. 2022, 5 (4). https://doi.org/10.1007/s41918-022-00131-z.Search in Google Scholar
193. Yang, Y.; Wang, W.; Meng, G.; Zhang, J. Function-Directed Design of Battery Separators Based on Microporous Polyolefin Membranes. J. Mater. Chem. A 2022, 10 (27), 14137–14170. https://doi.org/10.1039/d2ta03511a.Search in Google Scholar
194. Xiang, Y.; Li, J.; Lei, J.; Liu, D.; Xie, Z.; Qu, D.; Li, K.; Deng, T.; Tang, H. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. ChemSusChem 2016, 9 (21), 3023–3039. https://doi.org/10.1002/cssc.201600943.Search in Google Scholar PubMed
195. Izazi, A. A.; Show, P. L.; Lai, C.-L.; Phang, S.-M. Red Seaweed Pulp as a Separator in Rechargeable Al-Anode Battery. Polym. Polym. Compos. 2017, 25 (7), 521–526. https://doi.org/10.1177/096739111702500703.Search in Google Scholar
196. Lizundia, E.; Kundu, D. Advances in Natural Biopolymer-Based Electrolytes and Separators for Battery Applications. Adv. Funct. Mater. 2020, 31 (3), 2005646. https://doi.org/10.1002/adfm.202005646.Search in Google Scholar
197. Zhang, S. S. A Review on the Separators of Liquid Electrolyte Li-Ion Batteries. J. Power Sources 2007, 164 (1), 351–364. https://doi.org/10.1016/j.jpowsour.2006.10.065.Search in Google Scholar
198. Francis, C. F. J.; Kyratzis, I. L.; Best, A. S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater. 2020, 32 (18), 1904205. https://doi.org/10.1002/adma.201904205.Search in Google Scholar PubMed
199. Li, A.; Yuen, A. C. Y.; Wang, W.; De Cachinho Cordeiro, I. M.; Wang, C.; Chen, T. B. Y.; Zhang, J.; Chan, Q. N.; Yeoh, G. H. A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches. Molecules 2021, 26 (2), 478. https://doi.org/10.3390/molecules26020478.Search in Google Scholar PubMed PubMed Central
200. Xing, J.; Li, J.-Y.; Fan, W.; Zhao, T.; Chen, X.-Y.; Li, H.; Cui, Y.; Zhenzhen, W.; Zhao, Y. A Review on Nanofibrous Separators towards Enhanced Mechanical Properties for Lithium-Ion Batteries. Compos., Part B 2022, 243, 110105. https://doi.org/10.1016/j.compositesb.2022.110105.Search in Google Scholar
201. Li, Y.; Yu, L.; Hu, W.; Hu, X. Thermotolerant Separators for Safe Lithium-Ion Batteries under Extreme Conditions. J. Mater. Chem. A 2020, 8 (39), 20294–20317. https://doi.org/10.1039/d0ta07511f.Search in Google Scholar
202. Lin, W.; Wang, F.; Wang, H.; Li, H.; Fan, Y.; Chan, D.; Chen, S.; Tang, Y.; Zhang, Y. Thermal-Stable Separators: Design Principles and Strategies towards Safe Lithium-Ion Battery Operations. ChemSusChem 2022, 15 (24). https://doi.org/10.1002/cssc.202201464.Search in Google Scholar PubMed
203. Li, L.; Duan, Y. Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators. Polymers 2023, 15 (18), 3690. https://doi.org/10.3390/polym15183690.Search in Google Scholar PubMed PubMed Central
204. Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Zhang, W.; He, W. Recent Development in Separators for High-Temperature Lithium-Ion Batteries. Small 2019, 15 (33). https://doi.org/10.1002/smll.201901689.Search in Google Scholar PubMed
205. Jang, J.; Oh, J.; Jeong, H.; Kang, W.; Jo, C. A Review of Functional Separators for Lithium Metal Battery Applications. Materials 2020, 13 (20), 4625. https://doi.org/10.3390/ma13204625.Search in Google Scholar PubMed PubMed Central
206. Liu, F.; Chuan, X. Recent Developments in Natural Mineral-Based Separators for Lithium-Ion Batteries. RSC Adv. 2021, 11 (27), 16633–16644. https://doi.org/10.1039/d1ra02845f.Search in Google Scholar PubMed PubMed Central
207. Zhang, L.; Li, X.; Yang, M.; Chen, W. High-Safety Separators for Lithium-Ion Batteries and Sodium-Ion Batteries: Advances and Perspective. Energy Storage Mater. 2021, 41, 522–545. https://doi.org/10.1016/j.ensm.2021.06.033.Search in Google Scholar
208. Cheng, X.-B.; Zhang, Q. Dendrite-Free Lithium Metal Anodes: Stable Solid Electrolyte Interphases for High-Efficiency Batteries. J. Mater. Chem. A 2015, 3 (14), 7207–7209. https://doi.org/10.1039/c5ta00689a.Search in Google Scholar
209. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115.Search in Google Scholar PubMed
210. Sheng, J.; Tong, S.; He, Z.; Yang, R. Recent Developments of Cellulose Materials for Lithium-Ion Battery Separators. Cellulose 2017, 24 (10), 4103–4122. https://doi.org/10.1007/s10570-017-1421-8.Search in Google Scholar
211. Zhou, H.; Gu, J.; Zhang, W.; Hu, C.; Lin, X. Rational Design of Cellulose Nanofibrils Separator for Sodium-Ion Batteries. Molecules 2021, 26 (18), 5539. https://doi.org/10.3390/molecules26185539.Search in Google Scholar PubMed PubMed Central
212. Yang, Y.; Li, N.; Tian, L.; Chen, Z.; Liu, Y.; Dong, K.; Cao, S.; Chen, T. Natural Wood-Derived Free-Standing Films as Efficient and Stable Separators for High-Performance Lithium Ion Batteries. Nanoscale Adv. 2022, 4 (7), 1718–1726. https://doi.org/10.1039/d2na00097k.Search in Google Scholar PubMed PubMed Central
213. Jiang, F.; Yin, L.; Yu, Q.; Zhong, C.; Zhang, J. Bacterial Cellulose Nanofibrous Membrane as Thermal Stable Separator for Lithium-Ion Batteries. J. Power Sources 2015, 279, 21–27. https://doi.org/10.1016/j.jpowsour.2014.12.090.Search in Google Scholar
214. Gwon, H.; Park, K.; Chung, S.-C.; Kim, R.-H.; Kang, J. K.; Ji, S. M.; Kim, N.-J.; Lee, S.; Ku, J.-H.; Do, E. C.; Park, S.; Kim, M.; Shim, W. Y.; Rhee, H. S.; Kim, J.-Y.; Kim, J.; Kim, T. Y.; Yamaguchi, Y.; Iwamuro, R.; Saito, S.; Kim, G.; Jung, I. S.; Lee, C.; Jeon, W. S.; Jang, W. D.; Lee, S. Y.; Im, D.; Doo, S. G.; Lee, H. C.; Park, J. H. A Safe and Sustainable Bacterial Cellulose Nanofiber Separator for Lithium Rechargeable Batteries. Proc. Natl. Acad. Sci. 2019, 116 (39), 19288–19293. https://doi.org/10.1073/pnas.1905527116.Search in Google Scholar PubMed PubMed Central
215. Hao, W.; Bo, X.; Xie, J.; Xu, T. Mechanical Properties of Macromolecular Separators for Lithium-Ion Batteries Based on Nanoindentation Experiment. Polymers 2022, 14 (17), 3664. https://doi.org/10.3390/polym14173664.Search in Google Scholar PubMed PubMed Central
216. Lizundia, E.; Costa, C. M.; Alves, R.; Lanceros-Méndez, S. Cellulose and its Derivatives for Lithium Ion Battery Separators: A Review on the Processing Methods and Properties. Carbohydr. Polym. Technol. Appl. 2020, 1, 100001. https://doi.org/10.1016/j.carpta.2020.100001.Search in Google Scholar
217. Zhou, W.; Chen, M.; Tian, Q.; Chen, J.; Xu, X.; Wong, C.-P. Cotton-Derived Cellulose Film as a Dendrite-Inhibiting Separator to Stabilize the Zinc Metal Anode of Aqueous Zinc Ion Batteries. Energy Storage Mater. 2022, 44, 57–65. https://doi.org/10.1016/j.ensm.2021.10.002.Search in Google Scholar
218. Lv, D.; Chai, J.; Wang, P.; Zhu, L.; Liu, C.; Nie, S.; Li, B.; Cui, G. Pure Cellulose Lithium-Ion Battery Separator with Tunable Pore Size and Improved Working Stability by Cellulose Nanofibrils. Carbohydr. Polym. 2020, 251, 116975. https://doi.org/10.1016/j.carbpol.2020.116975.Search in Google Scholar PubMed
219. Huang, Z.; Sun, W.; Sun, Z.; Ding, R.; Wang, X. Graphene-Based Materials for the Separator Functionalization of Lithium-Ion/Metal/Sulfur Batteries. Materials 2023, 16 (12), 4449. https://doi.org/10.3390/ma16124449.Search in Google Scholar PubMed PubMed Central
220. Liao, C.; Mu, X.; Han, L.; Li, Z.; Zhu, Y.; Lu, J.; Wang, H.; Song, L.; Kan, Y.; Hu, Y. A Flame-Retardant, High Ionic-Conductivity and Eco-Friendly Separator Prepared by Papermaking Method for High-Performance and Superior Safety Lithium-Ion Batteries. Energy Storage Mater. 2022, 48, 123–132. https://doi.org/10.1016/j.ensm.2022.03.008.Search in Google Scholar
221. Liu, W.; Jiang, Y.; Wang, N.; Fu, W. Recent Progress in Flame Retardant Technology of Battery: A Review. Resour. Chem. Mater. 2022, 2 (1), 80–99. https://doi.org/10.1016/j.recm.2022.07.005.Search in Google Scholar
222. Nargatti, K. I.; Ahankari, S. S.; Lasrado, D.; Subramaniam, R. T. Nanocellulose-Based Separators for Energy Storage Devices. Nanomater. Renew. Resour. Emerg. Appl. 2022, 265–283. https://doi.org/10.1201/9781003245261-12.Search in Google Scholar
223. Ding, Z.; Yang, X.; Tang, Y. Nanocellulose-Based Electrodes and Separator toward Sustainable and Flexible All-Solid-State Supercapacitor. Int. J. Biol. Macromol. 2023, 228, 467–477. https://doi.org/10.1016/j.ijbiomac.2022.12.224.Search in Google Scholar PubMed
224. Gonçalves, R.; Lizundia, E.; Silva, M. M.; Costa, C. M.; Lanceros-Méndez, S. Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2 (5), 3749–3761. https://doi.org/10.1021/acsaem.9b00458.Search in Google Scholar
225. Liu, J.; Yang, K.; Mo, Y.; Wang, S.; Han, D.; Xiao, M.; Meng, Y. Highly Safe Lithium-Ion Batteries: High Strength Separator from Polyformaldehyde/Cellulose Nanofibers Blend. J. Power Sources 2018, 400, 502–510. https://doi.org/10.1016/j.jpowsour.2018.08.043.Search in Google Scholar
226. Kim, H.; Guccini, V.; Lu, H.; Salazar-Alvarez, G.; Lindbergh, G.; Cornell, A. M. Lithium Ion Battery Separators Based on Carboxylated Cellulose Nanofibers from Wood. ACS Appl. Energy Mater. 2018, 2 (2), 1241–1250. https://doi.org/10.1021/acsaem.8b01797.Search in Google Scholar
227. Sharma, S. K.; Sharma, G.; Gaur, A.; Arya, A.; Mirsafi, F. S.; Abolhassani, R.; Rubahn, H.-G.; Yu, J.-S.; Mishra, Y. K. Progress in Electrode and Electrolyte Materials: Path to All-Solid-State Li-Ion Batteries. Energy Adv. 2022, 1 (8), 457–510. https://doi.org/10.1039/d2ya00043a.Search in Google Scholar
228. Chattopadhyay, J.; Pathak, T. S.; Santos, D. M. F. Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review. Polymers 2023, 15 (19), 3907. https://doi.org/10.3390/polym15193907.Search in Google Scholar PubMed PubMed Central
229. Mistry, A.; Srinivasan, V.; Steinrueck, H.-G. Characterizing Ion Transport in Electrolytes via Concentration and Velocity Profiles. Adv. Energy Mater. 2023, 13 (9). https://doi.org/10.1002/aenm.202203690.Search in Google Scholar
230. Schmidt-Rohr, K. How Batteries Store and Release Energy: Explaining Basic Electrochemistry. J. Chem. Educ. 2018, 95 (10), 1801–1810. https://doi.org/10.1021/acs.jchemed.8b00479.Search in Google Scholar
231. Ormerod, R. M. Solid Oxide Fuel Cells. Chem. Soc. Rev. 2002, 32 (1), 17–28. https://doi.org/10.1039/b105764m.Search in Google Scholar PubMed
232. Salado, M.; Lizundia, E. Advances, Challenges, and Environmental Impacts in Metal–Air Battery Electrolytes. Mater. Today Energy 2022, 28, 101064. https://doi.org/10.1016/j.mtener.2022.101064.Search in Google Scholar
233. Zhan, C.; Wu, T.; Lu, J.; Amine, K. Dissolution, Migration, and Deposition of Transition Metal Ions in Li-Ion Batteries Exemplified by Mn-Based Cathodes – a Critical Review. Energy Environ. Sci. 2018, 11 (2), 243–257. https://doi.org/10.1039/c7ee03122j.Search in Google Scholar
234. Roy, P.; Srivastava, S. K. Nanostructured Anode Materials for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3 (6), 2454–2484. https://doi.org/10.1039/c4ta04980b.Search in Google Scholar
235. Guo, L.; Thornton, D. B.; Koronfel, M. A.; Stephens, I. E. L.; Ryan, M. P. Degradation in Lithium Ion Battery Current Collectors. J. Phys.: Energy 2021, 3 (3), 032015. https://doi.org/10.1088/2515-7655/ac0c04.Search in Google Scholar
236. Chaudhary, P.; Bansal, S.; Sharma, B. B.; Saini, S.; Joshi, A. Waste Biomass-Derived Activated Carbons for Various Energy Storage Device Applications: A Review. J. Energy Storage 2024, 78, 109996. https://doi.org/10.1016/j.est.2023.109996.Search in Google Scholar
237. Malekshah, M. H.; Malekshah, E. H.; Salari, M.; Rahimi, A.; Rahjoo, M.; Kasaeipoor, A. Thermal Analysis of a Cell of Lead-Acid Battery Subjected by Non-uniform Heat Flux during Natural Convection. Therm. Sci. Eng. Prog. 2018, 5, 317–326. https://doi.org/10.1016/j.tsep.2018.01.004.Search in Google Scholar
238. Wilberforce, T.; Thompson, J.; Olabi, A. G. Classification of Energy Storage Materials. Encycl. Smart Mater.: Energy Storage Mater. Energy Harvest. 2022, 8–14. https://doi.org/10.1016/B978-0-12-803581-8.11762-X.Search in Google Scholar
239. Hossain, M. D.; Islam, M. M.; Hossain, M. J.; Yasmin, S.; Shingho, S. R.; Ananna, N. A.; Mustafa, C. M. Effects of Additives on the Morphology and Stability of PbO2 Films Electrodeposited on Nickel Substrate for Light Weight Lead-Acid Battery Application. J. Energy Storage 2020, 27, 101108. https://doi.org/10.1016/j.est.2019.101108.Search in Google Scholar
240. Truong, V. M.; Duong, N. B.; Dien, T. V.; Banh, H. T. Improving Performance of Lead-Acid Batteries through Carbon Lead Hybrid Electrodes. J. Sustain. Sci. Manag. 2021, 16 (3), 91–102. https://doi.org/10.46754/jssm.2021.04.008.Search in Google Scholar
241. Chung, G. J.; Han, J.; Song, S.-W. Fire-Preventing LiPF6 and Ethylene Carbonate-Based Organic Liquid Electrolyte System for Safer and Outperforming Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12 (38), 42868–42879. https://doi.org/10.1021/acsami.0c12702.Search in Google Scholar PubMed
242. Jeong, S.-K.; Song, H.-Y.; Kim, S. I.; Abe, T.; Jeon, W. S.; Yin, R.-Z.; Kim, Y. S. A Simple Method of Electrochemical Lithium Intercalation within Graphite from a Propylene Carbonate-Based Solution. Electrochem. Commun. 2013, 31, 24–27. https://doi.org/10.1016/j.elecom.2013.02.019.Search in Google Scholar
243. Johnson, S. C.; Todd Davidson, F.; Rhodes, J. D.; Coleman, J. L.; Bragg-Sitton, S. M.; Dufek, E. J.; Webber, M. E. Selecting Favorable Energy Storage Technologies for Nuclear Power. Storage and Hybrid. Nucl. Energy 2019, 119–175. https://doi.org/10.1016/b978-0-12-813975-2.00005-3.Search in Google Scholar
244. Abarro, J. M. E.; Gavan, J. N. L.; Loresc, D. E. D.; Ortega, M. A. A.; Esparcia, E. A.; Paraggua, J. A. D. R. A Tale of Nickel-Iron Batteries: Its Resurgence in the Age of Modern Batteries. Batteries 2023, 9 (7), 383. https://doi.org/10.3390/batteries9070383.Search in Google Scholar
245. Ash, B.; Nalajala, V.; Popuri, A.; Subbaiah, T.; Minakshi, M. Perspectives on Nickel Hydroxide Electrodes Suitable for Rechargeable Batteries: Electrolytic vs. Chemical Synthesis Routes. Nanomaterials 2020, 10 (9), 1878. https://doi.org/10.3390/nano10091878.Search in Google Scholar PubMed PubMed Central
246. Meng, T.; Young, K.-H.; Wong, D.; Nei, J. Ionic Liquid-Based Non-aqueous Electrolytes for Nickel/Metal Hydride Batteries. Batteries 2017, 3 (4), 4. https://doi.org/10.3390/batteries3010004.Search in Google Scholar
247. Collins, J.; Gourdin, G.; Qu, D. Modern Applications of Green Chemistry. Green Chem. 2018, 771–860. https://doi.org/10.1016/b978-0-12-809270-5.00028-5.Search in Google Scholar
248. Lim, M. B.; Lambert, T. N.; Chalamala, B. R. Rechargeable Alkaline Zinc–Manganese Oxide Batteries for Grid Storage: Mechanisms, Challenges and Developments. Mater. Sci. Eng.: R: Rep. 2021, 143, 100593. https://doi.org/10.1016/j.mser.2020.100593.Search in Google Scholar
249. Kordesch, K.; Taucher-Mautner, W. Primary Batteries – Aqueous Systems | Leclanché and Zinc–Carbon. Encycl. Electrochem. Power Sources 2009, 43–54. https://doi.org/10.1016/b978-044452745-5.00097-6.Search in Google Scholar
250. Bhattacharjee, U.; Ghosh, S.; Madhushri, B.; Martha, S. K. Electrochemical Energy Storage Part I: Development, Basic Principle and Conventional Systems. Emerg. Trends in Energy Storage Syst. Ind. Appl. 2023, 151–188. https://doi.org/10.1016/b978-0-323-90521-3.00001-6.Search in Google Scholar
251. Larsson, F.; Andersson, P.; Blomqvist, P.; Mellander, B.-E. Toxic Fluoride Gas Emissions from Lithium-Ion Battery Fires. Sci. Rep. 2017, 7 (1). https://doi.org/10.1038/s41598-017-09784-z.Search in Google Scholar PubMed PubMed Central
252. Koch, S.; Fill, A.; Birke, K. P. Comprehensive Gas Analysis on Large Scale Automotive Lithium-Ion Cells in Thermal Runaway. J. Power Sources 2018, 398, 106–112. https://doi.org/10.1016/j.jpowsour.2018.07.051.Search in Google Scholar
253. Shahid, S.; Agelin-Chaab, M. A Review of Thermal Runaway Prevention and Mitigation Strategies for Lithium-Ion Batteries. Energy Convers. Manag.: X 2022, 16, 100310. https://doi.org/10.1016/j.ecmx.2022.100310.Search in Google Scholar
254. Chen, L.; Fan, X.; Hu, E.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Li, J.; Su, D.; Yang, X.; Wang, C. Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery. Chem 2019, 5 (4), 896–912. https://doi.org/10.1016/j.chempr.2019.02.003.Search in Google Scholar
255. Alipour, M.; Ziebert, C.; Conte, F. V.; Kizilel, R. A Review on Temperature-dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells. Batteries 2020, 6 (3), 35. https://doi.org/10.3390/batteries6030035.Search in Google Scholar
256. Scrosati, B.; Garche, J. Lithium Batteries: Status, Prospects and Future. J. Power Sources 2010, 195 (9), 2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048.Search in Google Scholar
257. Wang, H.; Liu, J.; Xia, D.; Fu, Y.; Zhu, Y.; Hu, B.; Tao, Z.; Xiao, H.; Deng, S. Effect of Low Temperatures on Battery Recharge and Discharge Voltage. IOP Conf. Ser.: Earth and Environ. Sci. 2020, 571 (1), 012011. https://doi.org/10.1088/1755-1315/571/1/012011.Search in Google Scholar
258. Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci.: Mater. Int. 2018, 28 (6), 653–666. https://doi.org/10.1016/j.pnsc.2018.11.002.Search in Google Scholar
259. Shen, W.; Wang, N.; Zhang, J.; Wang, F.; Zhang, G. Heat Generation and Degradation Mechanism of Lithium-Ion Batteries during High-Temperature Aging. ACS Omega 2022, 7 (49), 44733–44742. https://doi.org/10.1021/acsomega.2c04093.Search in Google Scholar PubMed PubMed Central
260. Yang, H.; Guo, C.; Naveed, A.; Lei, J.; Yang, J.; Nuli, Y.; Wang, J. Recent Progress and Perspective on Lithium Metal Anode Protection. Energy Storage Mater. 2018, 14, 199–221. https://doi.org/10.1016/j.ensm.2018.03.001.Search in Google Scholar
261. Yang, Y.; Wang, R.; Shen, Z.; Yu, Q.; Xiong, R.; Shen, W. Towards a Safer Lithium-Ion Batteries: A Critical Review on Cause, Characteristics, Warning and Disposal Strategy for Thermal Runaway. Adv. Appl. Energy 2023, 11, 100146. https://doi.org/10.1016/j.adapen.2023.100146.Search in Google Scholar
262. Croy, J. R.; Abouimrane, A.; Zhang, Z. Next-Generation Lithium-Ion Batteries: The Promise of Near-Term Advancements. MRS Bull. 2014, 39 (5), 407–415. https://doi.org/10.1557/mrs.2014.84.Search in Google Scholar
263. Chen, M.; Yue, Z.; Wu, Y.; Wang, Y.; Li, Y.; Chen, Z. Thermal Stable Polymer-Based Solid Electrolytes: Design Strategies and Corresponding Stable Mechanisms for Solid-State Li Metal Batteries. Sustain. Mater. Technol. 2023, 36, e00587. https://doi.org/10.1016/j.susmat.2023.e00587.Search in Google Scholar
264. Kumar, J.; Neiber, R. R.; Park, J.; Ali Soomro, R.; Greene, G. W.; Ali Mazari, S.; Young Seo, H.; Hong Lee, J.; Shon, M.; Wook Chang, D.; Yong Cho, K. Recent Progress in Sustainable Recycling of LiFePO4-type Lithium-Ion Batteries: Strategies for Highly Selective Lithium Recovery. Chem. Eng. J. 2022, 431, 133993. https://doi.org/10.1016/j.cej.2021.133993.Search in Google Scholar
265. Dobó, Z.; Dinh, T.; Kulcsár, T. A Review on Recycling of Spent Lithium-Ion Batteries. Energy Rep. 2023, 9, 6362–6395. https://doi.org/10.1016/j.egyr.2023.05.264.Search in Google Scholar
266. Ran, L.; Li, M.; Cooper, E.; Luo, B.; Gentle, I.; Wang, L.; Knibbe, R. Enhanced Safety and Performance of High-Voltage Solid-State Sodium Battery through Trilayer, Multifunctional Electrolyte Design. Energy Storage Mater. 2021, 41, 8–13. https://doi.org/10.1016/j.ensm.2021.05.040.Search in Google Scholar
267. Zhang, Z.; Wang, X.; Li, X.; Zhao, J.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Review on Composite Solid Electrolytes for Solid-State Lithium-Ion Batteries. Mater. Today Sustain. 2023, 21, 100316. https://doi.org/10.1016/j.mtsust.2023.100316.Search in Google Scholar
268. Arbizzani, C.; Gabrielli, G.; Mastragostino, M. Thermal Stability and Flammability of Electrolytes for Lithium-Ion Batteries. J. Power Sources 2011, 196 (10), 4801–4805. https://doi.org/10.1016/j.jpowsour.2011.01.068.Search in Google Scholar
269. Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front. Chem. 2019, 7. https://doi.org/10.3389/fchem.2019.00522.Search in Google Scholar PubMed PubMed Central
270. Gao, C.; Li, X.; Wei, G.; Wang, S.; Zhao, X.; Kong, F. Cellulose Acetate Propionate Incorporated PVDF-HFP Based Polymer Electrolyte Membrane for Lithium Batteries. Compos. Commun. 2022, 33, 101226. https://doi.org/10.1016/j.coco.2022.101226.Search in Google Scholar
271. Zhu, X.; Jiang, G.; Wang, G.; Zhu, Y.; Cheng, W.; Zeng, S.; Zhou, J.; Xu, G.; Zhao, D. Cellulose-Based Functional Gels and Applications in Flexible Supercapacitors. Resour. Chem. Mater. 2023, 2 (2), 177–188. https://doi.org/10.1016/j.recm.2023.03.004.Search in Google Scholar
272. Johari, N. A.; Kudin, T. I. T.; Ali; Winie, T.; Yahya, A. Studies on Cellulose Acetate-Based Gel Polymer Electrolytes for Proton Batteries. Mater. Res. Innovations 2009, 13 (3), 232–234. https://doi.org/10.1179/143307509x440389.Search in Google Scholar
273. Zhao, L.; Fu, J.; Du, Z.; Jia, X.; Qu, Y.; Yu, F.; Du, J.; Chen, Y. High-Strength and Flexible Cellulose/PEG Based Gel Polymer Electrolyte with High Performance for Lithium Ion Batteries. J. Membr. Sci. 2020, 593, 117428. https://doi.org/10.1016/j.memsci.2019.117428.Search in Google Scholar
274. Kale, R. B.; More, S. S.; Khupse, N. D.; Kalubarme, R. S.; Kulkarni, M. V.; Rane, S. B.; Kale, B. B. High-Voltage Ionic Liquid-Based Flexible Solid Polymer Electrolyte for High-Performance Li-Ion Batteries. Sustain. Energy & Fuels 2023, 7 (12), 2934–2942. https://doi.org/10.1039/d3se00417a.Search in Google Scholar
275. Xu, L.; Meng, T.; Zheng, X.; Li, T.; Brozena, A. H.; Mao, Y.; Zhang, Q.; Bryson, C. C.; Rao, J.; Hu, L. Nanocellulose-Carboxymethylcellulose Electrolyte for Stable, High-Rate Zinc-Ion Batteries. Adv. Funct. Mater. 2023, 33 (27). https://doi.org/10.1002/adfm.202302098.Search in Google Scholar
276. Zhao, Q.; Xu, T.; Liu, K.; Du, H.; Zhang, M.; Wang, Y.; Yang, L.; Zhang, H.; Wang, X.; Si, C. Biomass-Based Functional Materials for Rechargeable Zn-Ion Batteries. Energy Storage Mater. 2024, 71, 103605. https://doi.org/10.1016/j.ensm.2024.103605.Search in Google Scholar
277. Nechyporchuk, O.; Belgacem, M. N.; Bras, J. Production of Cellulose Nanofibrils: A Review of Recent Advances. Ind. Crops Prod. 2016, 93, 2–25. https://doi.org/10.1016/j.indcrop.2016.02.016.Search in Google Scholar
278. Arantes, V.; Dias, I. J.; Berto, G. L.; Pereira, B.; Marotti, B. S.; Nogueira, C. F. O. The Current Status of the Enzyme-Mediated Isolation and Functionalization of Nanocelluloses: Production, Properties, Techno-Economics, and Opportunities. Cellulose 2020, 27 (18), 10571–10630. https://doi.org/10.1007/s10570-020-03332-1.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- ICEAM 2023 and ICHEAM-2024
- Reviews
- Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
- Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
- Original Papers
- Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
- Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
- Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
- Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
- Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
- Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
- Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
- Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
- Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Editorial
- ICEAM 2023 and ICHEAM-2024
- Reviews
- Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
- Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
- Original Papers
- Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
- Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
- Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
- Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
- Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
- Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
- Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
- Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
- Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
- News
- DGM – Deutsche Gesellschaft für Materialkunde