Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
Abstract
In this study, WO3 thin films deposited by spray pyrolysis were evaluated for their structural and surface morphology and optimized according to the parameters of this technique for applications such as hydrophilic uses, which need their own particular surface characteristic. The deposition solution contains tungsten hexachloride (WCl6), as the precursor, and hydrazine monohydrate (N2H4·H2O), as the solvent. To the best of our knowledge, no report has shown the presence of hydrazine monohydrate as a solvent for the WCl6 precursor. By increasing the annealing temperature, the crystallite structure and surface morphology for the mentioned application were improved, particularly at the concentration of 0.02 M and annealing temperature of 500 °C, the surface converts from nanogranule into nanoplate. Moreover, at this concentration and annealing temperature intense and narrow peaks were observed around 10.9° and 21.8° in X-ray diffraction pattern, which have not been shown in any other report.
Acknowledgments
The authors gratefully acknowledge the research department of University of Guilan.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Rozati, S. M.; Moghadamziabari, S. A. Mater. Chem. Phys. 2022, 292, 126789; https://doi.org/10.1016/j.matchemphys.2022.126789.Suche in Google Scholar
2. Regragui, M.; Addou, M.; Outzourhit, A.; Idrissi, E. E.; Kachouane, A.; Bougrine, A. Sol. Energy Mater. Sol. Cells 2003, 77, 341; https://doi.org/10.1016/S0927-0248(02)00353-7.Suche in Google Scholar
3. Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F. S. Renewable Sustainable Energy Rev. 2013, 26, 353; https://doi.org/10.1016/j.rser.2013.05.038.Suche in Google Scholar
4. Feng, W.; Zou, L.; Gao, G.; Wu, G.; Shen, J.; Li, W. Sol. Energy Mater. Sol. Cells 2016, 144, 316; https://doi.org/10.1016/j.solmat.2015.09.029.Suche in Google Scholar
5. Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M. E. Electrochim. Acta 2012, 65, 185; https://doi.org/10.1016/j.electacta.2012.01.035.Suche in Google Scholar
6. Louloudakis, D.; Vernardou, D.; Papadimitropoulos, G.; Davazoglou, D.; Koudoumas, E. Adv. Mater. Lett. 2018, 9, 578; https://doi.org/10.5185/amlett.2018.2013.Suche in Google Scholar
7. Maho, A.; Nayak, S.; Gillissen, F.; Cloots, R.; Rougier, A. Coatings 2023, 13 (11), 1879; https://doi.org/10.3390/coatings13111879.Suche in Google Scholar
8. Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. Sens. Actuators, B 2008, 133, 321; https://doi.org/10.1016/j.snb.2008.02.028.Suche in Google Scholar
9. Ghimbeu, C. M.; Lumbreras, M.; Siadat, M.; Schoonman, J. Mater. Sci. Semicond. Process. 2010, 13 (1), 1; https://doi.org/10.1016/j.mssp.2010.01.001.Suche in Google Scholar
10. Grbić, B.; Radić, N.; Stojadinović, S.; Vasilić, R.; Dohčević-Mitrović, Z.; Šaponjić, Z.; Stefanov, P. Surf. Coat. Technol. 2014, 258, 763; https://doi.org/10.1016/j.surfcoat.2014.07.082.Suche in Google Scholar
11. Mohite, S. V.; Rajpure, K. Y. Mater. Sci. Eng., B 2015, 200, 78; https://doi.org/10.1016/j.mseb.2015.06.009.Suche in Google Scholar
12. Ng, K. K. Complete Guide to Semiconductor Devices, Vol. 2; John Wiley & Sons Inc.: New York, 2002.Suche in Google Scholar
13. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Chem. Mater. 2002, 14 (6), 2812; https://doi.org/10.1021/cm020076p.Suche in Google Scholar
14. Simchi, H.; McCandless, B. E.; Meng, T.; Shafarman, W. N. J. Alloys Compd. 2014, 617, 609; https://doi.org/10.1016/j.jallcom.2014.08.047.Suche in Google Scholar
15. Sivakumar, R.; Raj, A. M. E.; Subramanian, B.; Jayachandran, M.; Trivedi, D. C.; Sanjeeviraja, C. Mater. Res. Bull. 2004, 39, 1479; https://doi.org/10.1016/j.materresbull.2004.04.023.Suche in Google Scholar
16. Enesca, A.; Enache, C.; Duta, A.; Schoonman, J. J. Eur. Ceram. Soc. 2006, 26 (4–5), 571; https://doi.org/10.1016/j.jeurceramsoc.2005.07.048.Suche in Google Scholar
17. Patil, P. S.; Nikam, S. B.; Kadam, L. D. Mater. Chem. Phys. 2001, 69, 77; https://doi.org/10.1016/S0254-0584(00)00382-5.Suche in Google Scholar
18. Tanner, R. E.; Szekeres, A.; Gogova, D.; Gesheva, K. Appl. Surf. Sci. 2003, 218, 162; https://doi.org/10.1016/S0169-4332(03)00575-0.Suche in Google Scholar
19. Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C. Opt. Mater. 2007, 29, 679; https://doi.org/10.1016/j.optmat.2005.11.017.Suche in Google Scholar
20. Behbahani, M. A.; Ranjbar, M.; Kameli, P.; Salamati, H. Sens. Actuators, B 2013, 188, 127; https://doi.org/10.1016/j.snb.2013.06.097.Suche in Google Scholar
21. Ismail, M.; Bousselmi, L.; Zahraa, O. J. Photochem. Photobiol., A 2011, 222 (2–3), 314; https://doi.org/10.1016/j.jphotochem.2011.07.001.Suche in Google Scholar
22. Vijayalakshmi, R.; Jayachandran, M.; Sanjeeviraja, C. Curr. Appl. Phys. 2003, 3, 171; https://doi.org/10.1016/S1567-1739(02)00196-7.Suche in Google Scholar
23. Bertus, L. M.; Faure, C.; Danine, A.; Labrugère, C.; Campet, G.; Rougier, A.; Duta, A. Mater. Chem. Phys. 2013, 140, 49; https://doi.org/10.1016/j.matchemphys.2013.02.047.Suche in Google Scholar
24. Bertus, L. M.; Enesca, A.; Duta, A. Thin Solid Films 2012, 520, 4282; https://doi.org/10.1016/j.tsf.2012.02.052.Suche in Google Scholar
25. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds; John Wiley & Sons: Canada, 1986.Suche in Google Scholar
26. Regragui, M.; Addou, M.; Outzourhit, A.; Bernede, J. C.; El Idrissi, E.; Benseddik, E.; Kachouane, A. Thin Solid Films 2000, 358, 40; https://doi.org/10.1016/S0040-6090(99)00682-3.Suche in Google Scholar
27. Mukherjee, R.; Kushwaha, A.; Sahay, P. P. Electron. Mater. Lett. 2014, 10, 401; https://doi.org/10.1007/S13391-013-3221-0.Suche in Google Scholar
28. Adelifard, M.; Salamatizadeh, R.; Ketabi, S. A. J. Mater. Sci.: Mater. Electron. 2016, 27, 5243; https://doi.org/10.1007/s10854-016-4420-x.Suche in Google Scholar
29. Wenzel, R. N. Ind. Eng. Chem. 1936, 28 (8), 988; https://doi.org/10.1021/ie50320a024.Suche in Google Scholar
30. Azimirad, R.; Naseri, N.; Akhavan, O.; Moshfegh, A. Z. J. Phys. D:Appl. Phys. 2007, 40, 1134; https://doi.org/10.1088/0022-3727/40/4/034.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde