Startseite Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent

  • Mojtaba Ojakeh und Seyed Mohamad Rozati ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, WO3 thin films deposited by spray pyrolysis were evaluated for their structural and surface morphology and optimized according to the parameters of this technique for applications such as hydrophilic uses, which need their own particular surface characteristic. The deposition solution contains tungsten hexachloride (WCl6), as the precursor, and hydrazine monohydrate (N2H4·H2O), as the solvent. To the best of our knowledge, no report has shown the presence of hydrazine monohydrate as a solvent for the WCl6 precursor. By increasing the annealing temperature, the crystallite structure and surface morphology for the mentioned application were improved, particularly at the concentration of 0.02 M and annealing temperature of 500 °C, the surface converts from nanogranule into nanoplate. Moreover, at this concentration and annealing temperature intense and narrow peaks were observed around 10.9° and 21.8° in X-ray diffraction pattern, which have not been shown in any other report.


Corresponding author: Seyed Mohamad Rozati, Department of Physics, University of Guilan, Namjoo Sreet, Rasht 4199613776, Iran, E-mail: . https://guilan.ac.ir

Acknowledgments

The authors gratefully acknowledge the research department of University of Guilan.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The author have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Rozati, S. M.; Moghadamziabari, S. A. Mater. Chem. Phys. 2022, 292, 126789; https://doi.org/10.1016/j.matchemphys.2022.126789.Suche in Google Scholar

2. Regragui, M.; Addou, M.; Outzourhit, A.; Idrissi, E. E.; Kachouane, A.; Bougrine, A. Sol. Energy Mater. Sol. Cells 2003, 77, 341; https://doi.org/10.1016/S0927-0248(02)00353-7.Suche in Google Scholar

3. Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F. S. Renewable Sustainable Energy Rev. 2013, 26, 353; https://doi.org/10.1016/j.rser.2013.05.038.Suche in Google Scholar

4. Feng, W.; Zou, L.; Gao, G.; Wu, G.; Shen, J.; Li, W. Sol. Energy Mater. Sol. Cells 2016, 144, 316; https://doi.org/10.1016/j.solmat.2015.09.029.Suche in Google Scholar

5. Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M. E. Electrochim. Acta 2012, 65, 185; https://doi.org/10.1016/j.electacta.2012.01.035.Suche in Google Scholar

6. Louloudakis, D.; Vernardou, D.; Papadimitropoulos, G.; Davazoglou, D.; Koudoumas, E. Adv. Mater. Lett. 2018, 9, 578; https://doi.org/10.5185/amlett.2018.2013.Suche in Google Scholar

7. Maho, A.; Nayak, S.; Gillissen, F.; Cloots, R.; Rougier, A. Coatings 2023, 13 (11), 1879; https://doi.org/10.3390/coatings13111879.Suche in Google Scholar

8. Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. Sens. Actuators, B 2008, 133, 321; https://doi.org/10.1016/j.snb.2008.02.028.Suche in Google Scholar

9. Ghimbeu, C. M.; Lumbreras, M.; Siadat, M.; Schoonman, J. Mater. Sci. Semicond. Process. 2010, 13 (1), 1; https://doi.org/10.1016/j.mssp.2010.01.001.Suche in Google Scholar

10. Grbić, B.; Radić, N.; Stojadinović, S.; Vasilić, R.; Dohčević-Mitrović, Z.; Šaponjić, Z.; Stefanov, P. Surf. Coat. Technol. 2014, 258, 763; https://doi.org/10.1016/j.surfcoat.2014.07.082.Suche in Google Scholar

11. Mohite, S. V.; Rajpure, K. Y. Mater. Sci. Eng., B 2015, 200, 78; https://doi.org/10.1016/j.mseb.2015.06.009.Suche in Google Scholar

12. Ng, K. K. Complete Guide to Semiconductor Devices, Vol. 2; John Wiley & Sons Inc.: New York, 2002.Suche in Google Scholar

13. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Chem. Mater. 2002, 14 (6), 2812; https://doi.org/10.1021/cm020076p.Suche in Google Scholar

14. Simchi, H.; McCandless, B. E.; Meng, T.; Shafarman, W. N. J. Alloys Compd. 2014, 617, 609; https://doi.org/10.1016/j.jallcom.2014.08.047.Suche in Google Scholar

15. Sivakumar, R.; Raj, A. M. E.; Subramanian, B.; Jayachandran, M.; Trivedi, D. C.; Sanjeeviraja, C. Mater. Res. Bull. 2004, 39, 1479; https://doi.org/10.1016/j.materresbull.2004.04.023.Suche in Google Scholar

16. Enesca, A.; Enache, C.; Duta, A.; Schoonman, J. J. Eur. Ceram. Soc. 2006, 26 (4–5), 571; https://doi.org/10.1016/j.jeurceramsoc.2005.07.048.Suche in Google Scholar

17. Patil, P. S.; Nikam, S. B.; Kadam, L. D. Mater. Chem. Phys. 2001, 69, 77; https://doi.org/10.1016/S0254-0584(00)00382-5.Suche in Google Scholar

18. Tanner, R. E.; Szekeres, A.; Gogova, D.; Gesheva, K. Appl. Surf. Sci. 2003, 218, 162; https://doi.org/10.1016/S0169-4332(03)00575-0.Suche in Google Scholar

19. Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C. Opt. Mater. 2007, 29, 679; https://doi.org/10.1016/j.optmat.2005.11.017.Suche in Google Scholar

20. Behbahani, M. A.; Ranjbar, M.; Kameli, P.; Salamati, H. Sens. Actuators, B 2013, 188, 127; https://doi.org/10.1016/j.snb.2013.06.097.Suche in Google Scholar

21. Ismail, M.; Bousselmi, L.; Zahraa, O. J. Photochem. Photobiol., A 2011, 222 (2–3), 314; https://doi.org/10.1016/j.jphotochem.2011.07.001.Suche in Google Scholar

22. Vijayalakshmi, R.; Jayachandran, M.; Sanjeeviraja, C. Curr. Appl. Phys. 2003, 3, 171; https://doi.org/10.1016/S1567-1739(02)00196-7.Suche in Google Scholar

23. Bertus, L. M.; Faure, C.; Danine, A.; Labrugère, C.; Campet, G.; Rougier, A.; Duta, A. Mater. Chem. Phys. 2013, 140, 49; https://doi.org/10.1016/j.matchemphys.2013.02.047.Suche in Google Scholar

24. Bertus, L. M.; Enesca, A.; Duta, A. Thin Solid Films 2012, 520, 4282; https://doi.org/10.1016/j.tsf.2012.02.052.Suche in Google Scholar

25. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds; John Wiley & Sons: Canada, 1986.Suche in Google Scholar

26. Regragui, M.; Addou, M.; Outzourhit, A.; Bernede, J. C.; El Idrissi, E.; Benseddik, E.; Kachouane, A. Thin Solid Films 2000, 358, 40; https://doi.org/10.1016/S0040-6090(99)00682-3.Suche in Google Scholar

27. Mukherjee, R.; Kushwaha, A.; Sahay, P. P. Electron. Mater. Lett. 2014, 10, 401; https://doi.org/10.1007/S13391-013-3221-0.Suche in Google Scholar

28. Adelifard, M.; Salamatizadeh, R.; Ketabi, S. A. J. Mater. Sci.: Mater. Electron. 2016, 27, 5243; https://doi.org/10.1007/s10854-016-4420-x.Suche in Google Scholar

29. Wenzel, R. N. Ind. Eng. Chem. 1936, 28 (8), 988; https://doi.org/10.1021/ie50320a024.Suche in Google Scholar

30. Azimirad, R.; Naseri, N.; Akhavan, O.; Moshfegh, A. Z. J. Phys. D:Appl. Phys. 2007, 40, 1134; https://doi.org/10.1088/0022-3727/40/4/034.Suche in Google Scholar

Received: 2024-03-04
Accepted: 2024-07-11
Published Online: 2025-01-24
Published in Print: 2025-01-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0085/pdf?lang=de
Button zum nach oben scrollen