Home Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study
Article
Licensed
Unlicensed Requires Authentication

Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study

  • Ipsita Jena ORCID logo and Udai P. Singh ORCID logo EMAIL logo
Published/Copyright: December 4, 2024
Become an author with De Gruyter Brill

Abstract

Copper is a commonly preferred dopant for cadmium telluride based solar cells. Even though it is widely used as it enhances the electrical properties, it has the tendency to diffuse into the CdTe layer as well as the CdS/CdTe junction interface which adversely affects the performance of CdTe solar cells. In this experimental study copper doping of buffer cadmium sulfide layer has been performed to analyse its effect on structural, electrical, and optical properties of CdS and CdTe layers. While from the X-ray diffraction analysis it was observed that there was reduction in peak intensities and crystallite sizes of both the CdS and CdTe layers with the increase in amount of copper dopant, from the electrical properties it was found that there were improvements in carrier concentration, mobility, and conductivity of both the layers. To mitigate the losses due to Cu doping, enhance the efficiency and stability of CdTe solar cells an extensive numerical modelling approach was undertaken to employ electron transport layers (ETL) and hole transport layers (HTL) to the copper-doped CdS/CdTe solar cells. We obtained optimum results with titanium dioxide and copper barium thiostannate as ETL and HTL respectively. Finally, CdTe-based solar cells were modelled integrating copper-doped CdS as the buffer layers, TiO2 as ETL and CBTS as HTL respectively. The obtained experimental values of Cu-doped CdS and CdTe layers were implemented into this model. This superstrate configuration yielded impressive output parameters: open circuit voltage of 1.07 V, short-circuit current density of 29.32 mA cm−2, fill factor of 85.08 %, and efficiency of 26.67 %.


Corresponding author: Udai P. Singh, School of Electronics Engineering, KIIT Deemed to be University, Bhubaneswar, 751024, Odisha, India, E-mail:

Acknowledgments

The authors express their gratitude to to Prof. Marc Burgelman from ELSI, University of Gent, Belgium for the SCAPS software.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors acknowledge financial support from DST, India (SR/FST/ET-1/2021/862).

  7. Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

1. Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar Cell Efficiency Tables (Version 57). Prog. Photovolt. Res. Appl. 2021, 29 (1), 3–15. https://doi.org/10.1002/pip.3595.Search in Google Scholar

2. Kuddus, A.; Ismail, A. B. M.; Hossain, J. Design of a Highly Efficient CdTe-Based Dual-Heterojunction Solar Cell with 44% Predicted Efficiency. Sol. Energy 2021, 221, 488–501. https://doi.org/10.1016/j.solener.2021.04.062.Search in Google Scholar

3. Oliva, A. I.; Solıs-Canto, O.; Castro-Rodrıguez, R.; Quintana, P. Formation of the Band Gap Energy on CdS Thin Films Growth by Two Different Techniques. Thin Solid Films 2001, 391 (1), 28–35. https://doi.org/10.1016/S0040-6090(01)00830-6.Search in Google Scholar

4. Kashiwaba, Y.; Isojima, K.; Ohta, K. Improvement in the Efficiency of Cu-Doped CdS/non-Doped CdS Photovoltaic Cells Fabricated by an All-Vacuum Process. Sol. Energy Mater. Sol. Cells 2003, 75 (1-2), 253–259. https://doi.org/10.1016/S0927-0248(02)00167-8.Search in Google Scholar

5. Mukherjee, A.; Ghosh, P.; Aboud, A. A.; Mitra, P. Influence of Copper Incorporation in CdS: Structural and Morphological Studies. Mater. Chem. Phys. 2016, 184, 101–109. https://doi.org/10.1016/j.matchemphys.2016.09.030.Search in Google Scholar

6. Hossain, M. K.; Toki, G. I.; Kuddus, A.; Rubel, M. H. K.; Hossain, M. M.; Bencherif, H.; Rahman, M. F.; Islam, M. R.; Mushtaq, M. An Extensive Study on Multiple ETL and HTL Layers to Design and Simulation of High-Performance Lead-free CsSnCl3-Based Perovskite Solar Cells. Sci. Rep. 2023, 13 (1), 2521. https://doi.org/10.1038/s41598-023-28506-2.Search in Google Scholar PubMed PubMed Central

7. Muthusamy, M.; Muthukumaran, S. Effect of Cu-Doping on Structural, Optical and Photoluminescence Properties of CdS Thin Films. Optik 2015, 126 (24), 5200–5206. https://doi.org/10.1016/j.ijleo.2015.09.186.Search in Google Scholar

8. Shaban, M.; Mustafa, M.; El Sayed, A. M. Structural, Optical, and Photocatalytic Properties of the Spray Deposited Nanoporous CdS Thin Films; Influence of Copper Doping, Annealing, and Deposition Parameters. Mater. Sci. Semicond. Process. 2016, 56, 329–343. https://doi.org/10.1016/j.mssp.2016.09.006.Search in Google Scholar

9. Kachhia, Z. S.; Chaki, S. H.; Giri, R. K.; Parekh, Z. R.; Kannaujiya, R. M.; Hirpara, A. B.; Deshpande, M. P.; Tailor, J. P. Thermal Decomposition Study of Cadmium Telluride (CdTe). Mater. Today Proc. 2023. https://doi.org/10.1016/j.matpr.2023.02.240.Search in Google Scholar

10. Alzaid, M.; Hadia, N. M. A.; El Hagary, M.; Shaaban, E. R.; Mohamed, W. S. Microstructural, Optical, and Electrical Characteristics of Cu-Doped CdTe Nanocrystalline Films for Designing Absorber Layer in Solar Cell Applications. J. Mater. Sci. Mater. Electron. 2021, 32 (11), 15095–15107. https://doi.org/10.1007/s10854-021-06061-8.Search in Google Scholar

11. Ray, S.; Bangera, K. V.; Tarafder, K. Synthesis and Characterization of Cu Doped CdTe Thin Films for Solar Cell Application. Mater. Today Proc. 2021, 39, 2000–2004. https://doi.org/10.1016/j.matpr.2020.08.528.Search in Google Scholar

12. Kumar, N.; Pathak, T. K.; Purohit, L. P.; Swart, H. C.; Goswami, Y. C. Self-assembled Cu Doped CdS Nanostructures on Flexible Cellulose Acetate Substrates Using Low Cost Sol–Gel Route. Nano-Struct. Nano-Objects 2018, 16, 1–8. https://doi.org/10.1016/j.nanoso.2018.03.001.Search in Google Scholar

13. Daud, M. N. M.; Zakaria, A.; Jafari, A.; Ghazali, M. S. M.; Abdullah, W. R. W.; Zainal, Z. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition. Int. J. Mol. Sci. 2012, 13 (5), 5706–5714. https://doi.org/10.3390/ijms13055706.Search in Google Scholar PubMed PubMed Central

14. Rahman, K. S.; Haque, F.; Khan, N. A.; Islam, M. A.; Alam, M. M.; Alothman, Z. A.; Sopian, K.; Amin, N. Effect of CdCl2 Treatment on Thermally Evaporated CdTe Thin Films. Chalcogenide Lett. 2014, 11 (3), 129–139. https://doi.org/10.13140/2.1.2716.2883.Search in Google Scholar

15. Ikhmayies, S. J. S-rich CdS1−yTey Thin Films Produced by the Spray Pyrolysis Technique. Energies 2016, 9 (4), 234. https://doi.org/10.3390/en9040234.Search in Google Scholar

16. Aboud, A. A.; Mukherjee, A.; Revaprasadu, N.; Mohamed, A. N. The Effect of Cu-Doping on CdS Thin Films Deposited by the Spray Pyrolysis Technique. J. Mater. Res. Technol. 2019, 8 (2), 2021–2030. https://doi.org/10.1016/j.jmrt.2018.10.017.Search in Google Scholar

17. Naeema, N.; Kudher, A.; Mohammed, G. H. Structural and Optical Properties of CdTe: CuThin Films by Pulsed Laser Deposition Technique. IOP Conf. Ser. Mater. Sci. Eng. 2020, 757 (1), 012024. https://doi.org/10.1088/1757-899X/757/1/012024.Search in Google Scholar

18. Panda, R.; Rathore, V.; Rathore, M.; Shelke, V.; Badera, N.; Chandra, L. S.; Ganesan, V.; Gangrade, M.; Shripati, T. Carrier Recombination in Cu Doped CdS Thin Films: Photocurrent and Optical Studies. Appl. Surf. Sci. 2012, 258 (12), 5086–5093. https://doi.org/10.1016/j.apsusc.2012.01.131.Search in Google Scholar

19. de Moure-Flores, F.; Quiñones-Galván, J. G.; Guillén-Cervantes, A.; Arias-Cerón, J. S.; Contreras-Puente, G.; Hernández-Hernández, A.; Santoyo-Salazar, J.; Meléndez-Lira, M.; Santana-Aranda, M. A.; Zapata-Torres, M.; Mendoza-Álvarez, J. G.; Meléndez-Lira, M. Physical Properties of CdTe: Cu Films Grown at Low Temperature by Pulsed Laser Deposition. J. Appl. Phys. 2012, 112 (11). https://doi.org/10.1063/1.4768455.Search in Google Scholar

20. Abbas Shah, N.; Ali, A.; Maqsood, A. Preparation and Characterization of CdTe for Solar Cells, Detectors, and Related Thin-Film Materials. J. Electron. Mater. 2008, 37, 145–151. https://doi.org/10.1007/s11664-007-0338-7.Search in Google Scholar

21. Fatehmulla, A.; Almawash, S. A.; Albassam, A. A.; Aldhafiri, A. M.; Alghamdi, E. A.; Ramay, S. M.; Asif, M. Influence of γ-radiation on the Physical Characteristics of Thermally Evaporated Nanostructured CdS: Cl Films. J. King Saud Univ. Sci. 2022, 34 (6), 102200. https://doi.org/10.1016/j.jksus.2022.102200.Search in Google Scholar

22. Alzaid, M.; Alwshih, M.; Abd-el Salam, M. N.; Hadia, N. M. A. Role of Cu Dilute on Microstructures, Optical, Photoluminescence, Magnetic and Electrical Properties of CdS Film. Mater. Sci. Semicond. Process. 2021, 127, 105687. https://doi.org/10.1016/j.mssp.2021.105687.Search in Google Scholar

23. Ma, Z.; Yu, K. M.; Liu, L.; Wang, L.; Perry, D. L.; Walukiewicz, W.; Yu, P.; Mao, S. S. Copper-doped CdTe Films with Improved Hole Mobility. Appl. Phys. Lett. 2007, 91 (9), 2–5. https://doi.org/10.1063/1.2778455.Search in Google Scholar

24. Verschraegen, J.; Burgelman, M. Numerical Modeling of Intra-band Tunneling for Heterojunction Solar Cells in SCAPS. Thin Solid Films 2007, 515 (15), 6276–6279. https://doi.org/10.1016/j.tsf.2006.12.049.Search in Google Scholar

25. Vallisree, S.; Sharma, A.; Thangavel, R.; Lenka, T. R. Investigations of Carrier Transport Mechanism and Junction Formation in Si/CZTS Dual Absorber Solar Cell Technology. Appl. Phys. A 2020, 126 (3), 1–10. https://doi.org/10.1007/s00339-020-3343-9.Search in Google Scholar

26. Mathur, A. S.; Singh, B. P. Study of Effect of Defects on CdS/CdTe Heterojunction Solar Cell. Optik 2020, 212, 164717. https://doi.org/10.1016/j.ijleo.2020.164717.Search in Google Scholar

27. He, X.; Wu, L.; Hao, X.; Zhang, J.; Li, C.; Wang, W.; Feng, L.; Du, Z. The Band Structures of Zn1−xMgxO (In) and the Simulation of CdTe Solar Cells with a Zn1−xMgxO (In) Window Layer by SCAPS. Energies 2019, 12 (2), 291. https://doi.org/10.3390/en12020291.Search in Google Scholar

28. Sarker, K.; Sumon, M. S.; Orthe, M. F.; Biswas, S. K.; Ahmed, M. M. Numerical Simulation of High Efficiency Environment Friendly CuBi2O4-Based Thin-Film Solar Cell Using SCAPS-1D. Int. J. Photoenergy 2023, 1, 7208502. https://doi.org/10.1155/2023/7208502.Search in Google Scholar

29. Zhan, P.; Chen, J.; Chen, L. Influence of SnO2, ZnO and TiO2 Layer on the Performance of CIGS and CdTe Solar Cells. IOP Conf. Ser. Earth Environ. Sci. 2021, 781 (4), 042069; https://doi.org/10.1088/1755-1315/781/4/042069.Search in Google Scholar

30. Emon, E. I.; Islam, A. M.; Sobayel, M. K.; Islam, S.; Akhtaruzzaman, M.; Amin, N.; Ahmed, A.; Rashid, M. J. A Comprehensive Photovoltaic Study on Tungsten Disulfide (WS2) Buffer Layer Based CdTe Solar Cell. Heliyon 2023, 9 (3). https://doi.org/10.1016/j.heliyon.2023.e14438.Search in Google Scholar PubMed PubMed Central

31. Ranjan, R.; Anand, N.; Tripathi, M. N.; Srivastava, N.; Sharma, A. K.; Yoshimura, M.; Chang, L.; Tiwari, R. N. SCAPS Study on the Effect of Various Hole Transport Layer on Highly Efficient 31.86% Eco-Friendly CZTS Based Solar Cell. Sci. Rep. 2023, 13 (1), 18411. https://doi.org/10.1038/s41598-023-44845-6.Search in Google Scholar PubMed PubMed Central

32. Sani, F.; Abdullahi, S. Influence of Front Contact Layer on the Performance of Bismuth-Based Perovskite Solar Cells. Mat. For 3rd Gen, Solar Cells. Eng. Phy. Ac. 2022, 2 (3), 7–12. https://doi.org/10.47514/phyaccess.sp.iss.2022.1.002.Search in Google Scholar

33. Obare, N.; Isoe, W.; Nalianya, A.; Mageto, M.; Odari, V. Numerical Study of Copper Antimony Sulphide (CuSbS2) Solarcell by SCAPS-1D. Heliyon 2024, 10 (5); https://doi.org/10.1016/j.heliyon.2024.e26896.Search in Google Scholar PubMed PubMed Central

34. Ahmmed, S.; Aktar, A.; Rahman, M. F.; Hossain, J.; Ismail, A. B. M. A Numerical Simulation of High Efficiency CdS/CdTe Based Solar Cell Using NiO HTL and ZnO TCO. Optik 2020, 223, 165625. https://doi.org/10.1016/j.ijleo.2020.165625.Search in Google Scholar

35. Hameed, K. Y.; Faisal, B.; Hanae, T.; Marí, S. B.; Saira, B.; Kaim, K. N. A. Modelling of Novel-Structured Copper Barium Tin Sulphide Thin Film Solar Cells. Bull. Mater. Sci. 2019, 42, 1–8. https://doi.org/10.1007/s12034-019-1919-9.Search in Google Scholar

36. Medina, J. C. Z.; Andrés, E. R.; Ruíz, C. M.; Espinosa, E. C.; Yarce, L. T.; Isasmendi, R. G.; Trujillo, R. R.; Salgado, G. G.; Solis, A. C.; Caballero, F. G. N. Numerical Simulation and Performance Optimization of a Solar Cell Based on WO3/CdTe Heterostructure Using NiO as HTL Layer by SCAPS 1D. Coatings 2023, 13 (8), 1436. https://doi.org/10.3390/coatings13081436.Search in Google Scholar

37. Rahman, S.; Al Ahmed, S. R. Photovoltaic Performance Enhancement in CdTe Thin-Film Heterojunction Solar Cell with Sb2S3 as Hole Transport Layer. Sol. Energy 2021, 230, 605–617. https://doi.org/10.1016/j.solener.2021.10.036.Search in Google Scholar

38. Singh, N. K.; Agarwal, A.; Kanumuri, T. Investigation of Electrical Parameters of CdTe Photovoltaic Devices by Computational Analysis. Phys. Status Solidi A 2022, 219 (3), 2100326. https://doi.org/10.1002/pssa.202100326.Search in Google Scholar

39. EL-Mrabet, M.; Tarbi, A.; Hachimi, M. A.; Erguig, H.; Chtouki, T. An Optimized Design to Boost Efficiency of CdTe-Based Solar Cell Using Scaps Simulator. J. Phys. Chem. Sol. 2024, 195, 112287. https://doi.org/10.2139/ssrn.4613895.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijmr-2024-0050).


Received: 2024-02-03
Accepted: 2024-06-20
Published Online: 2024-12-04
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. 5th International Conference on Processing and Characterization of Materials 2023 (ICPCM 2023)
  4. Original Papers
  5. Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction
  6. A complex impedance spectroscopy study on PVDF/PANI/CoFe2O4 composites
  7. Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study
  8. Synthesis and characterization of hydroxyapatite from Ariidea fish bone as reinforcement material for (chios mastic gum: papyrus vaccine pollen) bio composite bony scaffold
  9. Optimization of the process parameter of lean-grade self-reducing pellets by surface response modelling
  10. From raw materials to functional material: synthesis and piezoelectric characterization of PIN–PT binary relaxor material
  11. Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route
  12. Effect of beeswax on the physico-mechanical properties of poly (butylene adipate terephthalate)/poly lactic acid blend films
  13. Effect of Y2O3, TiO2, ZrO2 dispersion on oxidation resistance of W–Ni–Nb–Mo alloys
  14. Multifunctional characterisation of pressureless sintered Al2O3 –CaTiO3 nanocomposite
  15. Silicon–carbon superhydrophobic nano-structure for next generation semiconductor industry
  16. Interrelation between mechanical and electromagnetic radiation emission parameters with variable notch-width ratios under tensile fracture in silicon steel
  17. Effect of tool rotation and welding speed on microstructural and mechanical properties of dissimilar AA6061-T6 and AA5083-H12 joint in friction stir welding
  18. Effect of bentonite and molasses binder content on physical and mechanical properties of green and fired mill scale pellets
  19. FA-GGBFS based geopolymer concrete incorporating CMRW and SS as fine and coarse aggregates
  20. Characteristic study of intra woven green fibers for structural application
  21. An experimental investigation by electrochemical impedance spectroscopy for the study of mechanism of copper electrodeposition from an acidic bath
  22. Bažant-Le-Kirane Paradox of fatigue failure in engineering materials
  23. Thermal modeling and analysis of laser transmission welding of polypropylene: process mechanics and parameters
  24. The influence of welding modes on metallic structures processed through WAAM
  25. Ultrasonic metal welding of Al/Cu joints with Ni coating: parametric effects on joint performance and microstructural modifications
  26. News
  27. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0050/pdf
Scroll to top button