Home Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route
Article
Licensed
Unlicensed Requires Authentication

Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route

  • Nityananda Sahoo ORCID logo EMAIL logo , Arka Ghosh , Kalpana Sahoo , Anuj Rajoriya , Bappa Das , Pankaj Shrivastava and Syed Nasimul Alam
Published/Copyright: December 4, 2024
Become an author with De Gruyter Brill

Abstract

The present study provides an in-depth investigation of the exfoliation of molybdenum disulfide (MoS2) using high-energy ball milling and the subsequent development of aluminum‒molybdenum disulfide (Al–MoS2) nanocomposites via a powder metallurgy (PM) route. X-ray diffraction confirmed that the commercially available bulk MoS2 did not develop new phases after intense ball milling for up to 30 h. The effects of ball milling on the thermal stability and morphological changes in MoS2 powder have also been reported. The milling action caused a shift in the band gap of MoS2, from 1.2 to 1.44 eV due to quantum confinement phenomena confirmed by UV–visible absorption spectroscopy. The impacts of ball milling on the specific surface area and mean pore diameter of MoS2 were determined by the Brunauer–Emmett–Teller surface area analysis technique. Additionally, the investigation through Fourier transform infrared spectroscopy verifies the presence of functional groups, such as hydroxyl (O–H), alkane (C–H), and ether (C–O), on the MoS2 surface. The milling resulted in a significant reduction in particle size from an initial mean size of 1.2 µm–480 nm. Field emission scanning electron microscopy micrographs of the exfoliated MoS2 revealed a thin, cracked, and flake-like morphology. High-resolution transmission electron microscopy images revealed that the high-energy ball milling resulted in few-layered MoS2 nanoplatelets after 30 h of ball milling. Subsequently, the investigation extended its focus to the development of Al–MoS2 nanocomposites using the PM route, incorporating MoS2 into the Al matrix at different weight percentages (1, 2, 3, and 5 wt.%). Al-5 wt.% MoS2 nanocomposite showed the highest relative density of 93.09 %, the maximum hardness of 743.6 MPa, and the best wear performance among all the Al–MoS2 nanocomposites. The hardness of Al-5 wt.% MoS2 nanocomposite was 109.11 % higher than that of the pure Al sample developed similarly. A maximum compressive strength (σ max) of 494.67 MPa was observed in Al-5 wt.% MoS2 nanocomposite, which was 1.84 times the value of σ max obtained from sintered pure Al sample.


Corresponding author: Nityananda Sahoo, Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India, E-mail:

Acknowledgments

The authors are grateful for the support provided by the various laboratories at NIT Rourkela. We would like to thank the XRD, SEM, FTIR, and thermal analysis, laboratories of the Metallurgical and Materials Engineering Department at NIT Rourkela. We would also like to thank the FESEM laboratory of the Ceramic Engineering Department, the HRTEM laboratory of the Chemical Engineering Department, and the Raman spectroscopy laboratory of the Physics and Astronomy Department at NIT Rourkela.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Nityananda Sahoo: methodology, writing–review & editing. Arka Ghosh: formal analysis. Kalpana Sahoo: formal analysis. Anuj Rajoriya: investigation. Bappa Das: investigation. Pankaj Shrivastava: formal analysis. Syed Nasimul Alam: supervision, investigation, writing–review & editing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Miller, W. S.; Zhuang, L.; Bottema, J.; Wittebrood, A. J.; Smet, P. D.; Haszler, A.; Vieregge, A. Recent Development in Aluminium Alloys for the Automotive Industry. Mater. Sci. Eng. A. 2000, 280 (1), 37–49. https://doi.org/10.1016/S0921-5093(99)00653-X.Search in Google Scholar

2. Miracle, D. B. Metal Matrix Composites – from Science to Technological Significance. Compos. Sci. Technol. 2005, 65 (15-16), 2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027.Search in Google Scholar

3. Prasad, S. V.; Asthana, R. Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations. Tribol. Lett. 2004, 17, 445–453. https://doi.org/10.1023/B:TRIL.0000044492.91991.f3.10.1023/B:TRIL.0000044492.91991.f3Search in Google Scholar

4. Ali, A. M.; Omar, M. Z.; Hashim, H.; Salleh, M. S.; Mohamed, I. F. Recent Development in Graphene-Reinforced Aluminium Matrix Composite: A Review. Rev. Adv. Mater. Sci. 2021, 60 (1), 801–817. https://doi.org/10.1515/rams-2021-0062.Search in Google Scholar

5. Hashim, H.; Salleh, M. S.; Omar, M. Z. Homogenous Dispersion and Interfacial Bonding of Carbon Nanotube Reinforced with Aluminum Matrix Composite: A Review. Rev. Adv. Mater. Sci. 2019, 58 (1), 295–303. https://doi.org/10.1515/rams-2019-0035.Search in Google Scholar

6. Aborkin, A.; Khorkov, K.; Prusov, E.; Ob’edkov, A.; Kremlev, K.; Perezhogin, I.; Alymov, M. Effect of Increasing the Strength of Aluminum Matrix Nanocomposites Reinforced with Microadditions of Multiwalled Carbon Nanotubes Coated with TiC Nanoparticles. Nanomaterials 2019, 9 (11), 1596. https://doi.org/10.3390/nano9111596.Search in Google Scholar PubMed PubMed Central

7. Xia, J.; Yan, J.; Shen, Z. X. Transition Metal Dichalcogenides: Structural, Optical and Electronic Property Tuning via Thickness and Stacking. FlatChem 2017, 4, 1–19. https://doi.org/10.1016/j.flatc.2017.06.007.Search in Google Scholar

8. Cong, C.; Shang, J.; Wang, Y.; Yu, T. Optical Properties of 2D Semiconductor WS2. Adv. Opt. Mater. 2018, 6 (1), 1700767. https://doi.org/10.1002/adom.201700767.Search in Google Scholar

9. Naumis, G. G.; Lopez, S. B.; Leyva, M. O.; Terrones, H. Electronic and Optical Properties of Strained Graphene and Other Strained 2D Materials: a Review. Reports Prog. Phys. 2017, 80, 096501. https://doi.org/10.1088/1361-6633/aa74ef.Search in Google Scholar PubMed

10. Zhang, K.; Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two Dimensional Hexagonal Boron Nitride (2D-hBN): Synthesis, Properties and Applications. J. Mater. Chem. C. 2017, 5 (46), 11992–12022. https://doi.org/10.1039/C7TC04300G.10.1039/C7TC04300GSearch in Google Scholar

11. Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 2010, 10 (11) 4285–4294. 10.1021/nl102824h.10.1021/nl102824hSearch in Google Scholar PubMed

12. Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J. Z. Chem. Soc. Rev. 2018, 47 (16), 6101–6127. https://doi.org/10.1039/C8CS00314A.10.1039/C8CS00314ASearch in Google Scholar

13. Boandoh, S.; Choi, S. H.; Park, J. H.; Park, S. Y.; Bang, S.; Jeong, M. S.; Lee, J. S.; Kim, H. J.; Yang, W.; Choi, J. Y.; Kim, S. M.; Kim, K. K. A Novel and Facile Route to Synthesize Atomic-Layered MoS2 Film for Large-Area Electronics. Small 2017, 13 (39), 1701306. https://doi.org/10.1002/smll.201701306.10.1002/smll.201701306Search in Google Scholar PubMed

14. Samy, O.; Zeng, S.; Birowosuto, M. D.; Moutaouakil, A. E. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11 (4), 355. https://doi.org/10.3390/cryst11040355.Search in Google Scholar

15. Ghobadi, N. A Comparative Study of the Mechanical Properties of Multilayer MoS2 and graphene/MoS2 Heterostructure: Effects of Temperature, Number of Layers and Stacking Order. Curr. Appl. Phys. 2017, 17 (11), 1483–1493. https://doi.org/10.1016/j.cap.2017.08.018.Search in Google Scholar

16. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105 (13). https://doi.10.1103/PhysRevLett.105.136805.10.1103/PhysRevLett.105.136805Search in Google Scholar PubMed

17. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10 (4), 1271–1275. https://doi.org/10.1021/nl903868w.Search in Google Scholar PubMed

18. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. https://doi.org/10.1038/nchem.1589.Search in Google Scholar PubMed

19. Yoffe, A. D. Layer Compounds. Rev. Mater. Sci. 1973, 3, 147–170. https://doi.org/10.1146/annurev.ms.03.080173.001051.Search in Google Scholar

20. Liu, Y.; Nan, H.; Wu, X.; Pan, W.; Wang, W.; Bai, J.; Zhao, W.; Sun, L.; Wang, X.; Ni, Z. Layer-by-Layer Thinning of MoS2 by Plasma. ACS Nano 2013, 7 (5), 3733–4692. https://doi.org/10.1021/nn400644t.Search in Google Scholar PubMed

21. Nian, J.; Chen, L.; Guo, Z.; Liu, W. Computational Investigation of the Lubrication Behaviors of Dioxides and Disulfides of Molybdenum and Tungsten in Vacuum. Friction 2017, 5 (1), 23–31. https://doi.org/10.1007/s40544-016-0128-4.Search in Google Scholar

22. Stoyanov, P.; Harrington, K. M.; Frye, A. Insights into the Tribological Characteristic of Cu-Based Coatings under Extreme Contact Conditions. JOM 2020, 72, 2191–2197. https://doi.org/10.1007/s11837-020-04087-7.Search in Google Scholar

23. Rebba, B.; Ramanaiah, N. Evaluation of Mechanical Properties of Aluminium Alloy (Al-2024) Reinforced with Molybdenum Disulphide (MOS2) Metal Matrix Composites. Procedia Mater. Sci. 2014, 6, 1161–1169. https://doi.org/10.1016/j.mspro.2014.07.189.Search in Google Scholar

24. Xiao, J. K.; Zhang, W.; Liu, L. M.; Zhang, L.; Zhang, C. Tribological Behavior of Copper-Molybdenum Disulfide Composites. Wear 2017, 384–385, 61–71. https://doi.org/10.1016/j.wear.2017.05.006.Search in Google Scholar

25. Kanthavel, K.; Sumesh, K. R.; Saravanakumar, P. Study of Tribological Properties on Al/Al2O3/MoS2 Hybrid Composite Processed by Powder Metallurgy. Alexandria Eng. J. 2016, 55 (1), 13–17. https://doi.org/10.1016/j.aej.2016.01.024.Search in Google Scholar

26. Aswinprasad, V.; Sriharish, V. S.; Venkatesh, C.; Meda, A. H.; Kamalakannan, N. Experimental investigation of wear characteristics of Aluminium 6063 hybrid composite reinforced with Graphite and Molybdenum di sulfide (MoS2). Mater. Today Proc. 2019, 22, 3190–3196. https://doi.org/10.1016/j.matpr.2020.03.456.Search in Google Scholar

27. Sathiyan, S.; Ahmad, H.; Chong, W. Y.; Lee, S. H.; Sivabalan, S. Evolution of the Polarizing Effect of MoS2. IEEE Photonics J 2015, 7 (6), 1. https://doi.10.1109/JPHOT.2015.2499543.10.1109/JPHOT.2015.2499543Search in Google Scholar

28. Hwang, H.; Kim, H.; Cho, J. MoS2 Nanoplates Consisting of Disordered Graphene-like Layers for High Rate Lithium Battery Anode Materials. Nano Lett. 2011, 11 (11), 4826–4830. https://doi.org/10.1021/nl202675f.Search in Google Scholar PubMed

29. Wang, Q.; Li, J. Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes. Chem. C. 2007, 111 (4), 1675–1682. https://doi.org/10.1021/jp066655p.Search in Google Scholar

30. Ksiażek, K.; Wacke, S.; Górecki, T.; Górecki, C. Effect of the Milling Conditions on the Degree of Amorphization of Selenium by Milling in a Planetary Ball Mill. J. Phys. Conf. Ser. 2007, 79. https://doi.org/10.1088/1742-6596/79/1/012037.Search in Google Scholar

31. Park, S.; Esparza, A. T. G.; Abroshan, H.; Abraham, B.; Vinson, J.; Gallo, A.; Nordlund, D.; Park, J.; Kim, T. R.; Vallez, L.; Mori, R. A.; Sokaras, D.; Zheng, X. Operando Study of Thermal Oxidation of Monolayer MoS2. Adv. Sci. 2021, 8 (9), 2002768. https://doi.org/10.1002/advs.202002768.Search in Google Scholar PubMed PubMed Central

32. Zhou, K.; Jiang, S.; Bao, C.; Song, L.; Wang, B.; Tang, G.; Hu, Y.; Gui, Z. Preparation of Poly(vinyl Alcohol) Nanocomposites with Molybdenum Disulfide (MoS2): Structural Characteristics and Markedly Enhanced Properties. RSC Adv 2012, 2 (31), 11695. https://doi.org/10.1039/C2RA21719H.Search in Google Scholar

33. Pandey, A.; Dutta, S.; Kumar, A.; Raman, R.; Kapoor, A. K.; Muralidhran, R. Structural and Optical Properties of Bulk MoS2 for 2D Layer Growth. Adv. Mater. Lett. 2016, 7 (10), 777–782. https://doi.org/10.5185/amlett.2016.6364.Search in Google Scholar

34. Li, H.; Zhang, Q.; Yap, R.; Tay, B. K.; Teo, E. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22 (7), 1385–1390. https://doi.org/10.1002/adfm.201102111.Search in Google Scholar

35. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695–2700. https://doi.org/10.1021/nn1003937.Search in Google Scholar PubMed

36. Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J. Thermal Effects on the Characteristic Raman Spectrum of Molybdenum Disulfide (MoS2) of Varying Thicknesses. Appl. Phys. Lett. 2012, 100 (1), 013106. https://doi.org/10.1063/1.3673907.Search in Google Scholar

37. Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice Strain Effects on the Optical Properties of MoS2 Nanosheets. Sci. Rep. 2014, 4, 5649. https://doi.org/10.1038/srep05649.Search in Google Scholar PubMed PubMed Central

38. Pei, J.; Yang, J.; Xu, R.; Zeng, Y. H.; Myint, Y. W.; Zhang, S.; Zheng, J. C.; Qin, Q.; Wang, X.; Jiang, W.; Lu, Y. Exciton and Trion Dynamics in Bilayer MoS2. Small 2015, 11 (48), 6384–6390. https://doi.org/10.1002/smll.201501949.Search in Google Scholar PubMed

39. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C.; Dubey, M.; Cho, K.; Wallace, R. M.; Lee, S. C.; He, J. H.; Ager, J. W.; Zhang, X.; Yablonovitch, E.; Javey, A. Near-unity Photoluminescence Quantum Yield in MoS2. Science 2015, 350 (6264), 1065–1068. https://doi.org/10.1126/science.aad2114.Search in Google Scholar PubMed

40. Golovynskyi, S.; Irfan, I.; Bosi, M.; Seravalli, L.; Datsenko, O. I.; Golovynska, I.; Li, B.; Lin, D.; Qu, J. Exciton and Trion in Few-Layer MoS2: Thickness- and Temperature-dependent Photoluminescence. Appl. Surf. Sci. 2020, 515. https://doi.org/10.1016/j.apsusc.2020.146033.Search in Google Scholar

41. Zou, L.; Qu, R.; Gao, H.; Guan, X.; Qi, X.; Liu, C.; Zhang, Z.; Lei, X. MoS2/RGO Hybrids Prepared by a Hydrothermal Route as a Highly Efficient Catalytic for Sonocatalytic Degradation of Methylene Blue. Results Phys 2019, 14. https://doi.org/10.1016/j.rinp.2019.102458.Search in Google Scholar

42. Benavente, E.; Ana, M. A. S.; Mendizabal, F.; González, G. Intercalation Chemistry of Molybdenum Disulfide. Coord. Chem. Rev. 2002, 224 (1-2), 87–109. https://doi.org/10.1016/S0010-8545(01)00392-7.Search in Google Scholar

43. Song, C.; Park, H.; Seong, H.; López, H. F. Development of Athermal and Isothermalε-Martensite in Atomized Co-cr-mo-C Implant Alloy Powders. Metall. Mater. Trans. A. 2006, 37, 3197–3204. https://doi.org/10.1007/BF02586154.Search in Google Scholar

44. Dahlke, M. G.; Dąbrowski, J. R.; Dąbrowski, B. Modification of Mechanical Properties of Sintered Implant Materials on the Base of Co–cr–mo Alloy. J. Mater. Process. Technol. 2008, 204 (1-3), 199–205. https://doi.org/10.1016/j.jmatprotec.2007.11.034.Search in Google Scholar

45. Feng, W.; Chen, L.; Qin, M.; Zhou, X.; Zhang, Q.; Miao, Y.; Qiu, K.; Zhang, Y.; He, C. Flower-like PEGylated MoS2 Nanoflakes for Near-Infrared Photothermal Cancer Therapy. Sci. Rep. 2015, 5. https://doi.org/10.1038/srep17422.Search in Google Scholar PubMed PubMed Central

46. Jang, J.; Chee, S. S.; Kang, Y.; Kim, S. MoS2-Cysteine Nanofiltration Membrane for Lead Removal. ChemEngineering 2021, 5 (3), 41. https://doi.org/10.3390/chemengineering5030041.Search in Google Scholar

47. Forsberg, V.; Zhang, R.; Bäckström, J.; Dahlström, C.; Andres, B.; Norgren, M.; Andersson, M.; Hummelgård, M.; Olin, H. Exfoliated MoS2 in Water without Additives. PLoS One 2016, 11 (4), e0154522. https://doi.org/10.1371/journal.pone.0154522.Search in Google Scholar PubMed PubMed Central

48. Yeh, P. C.; Jin, W.; Zaki, N.; Zhang, D.; Liou, J. T.; Sadowski, J. T.; Mahboob, A. A.; Dadap, J. I.; Herman, I. P.; Sutter, P.; Osgood, R. M.Jr. Layer-dependent Electronic Structure of an Atomically Heavy Two-Dimensional Dichalcogenide. Phys. Rev. B. 2015, 91 (4). https://doi.org/10.1103/PhysRevB.91.041407.Search in Google Scholar

49. Mondal, K. G.; Jana, P. C.; Saha, S. Optical and Structural Properties of 2D Transition Metal Dichalcogenides Semiconductor MoS2. Bull. Mater. Sci. 2023, 46 (1), 15. https://doi.org/10.1007/s12034-022-02852-9.Search in Google Scholar

50. Benega, M. A. G.; Silva, W. M.; Schnitzler, M. C.; Andrade, R. J. E.; Ribeiro, H. Improvements in Thermal and Mechanical Properties of Composites Based on Epoxy-Carbon Nanomaterials - A Brief Landscape. Polym. Test. 2021, 98. https://doi.org/10.1016/j.polymertesting.2021.107180.Search in Google Scholar

51. Xu, X.; Liu, Z.; Zhang, B.; Chen, H.; Zhang, J.; Wang, T.; Zhang, K.; Zhang, J.; Huang, P. Effect of Mn Content on Microstructure and Properties of 6000 Series Aluminum Alloy. Appl. Phys. A. 2019, 125, 490. https://doi.org/10.1007/s00339-019-2780-9.Search in Google Scholar

52. Tyson, B. M.; Al-Rub, R. K. A.; Yazdanbakhsh, A.; Grasley, Z. A Quantitative Method for Analyzing the Dispersion and Agglomeration of Nano-Particles in Composite Materials. Compos. Part B Eng. 2011, 42 (6), 1395–1403. https://doi.org/10.1016/j.compositesb.2011.05.020.Search in Google Scholar

53. Shao, I.; Vereecken, P. M.; Chien, C. L.; Searson, P. C.; Cammarata, R. C. Synthesis and Characterization of Particle-Reinforced Ni/Al2O3 Nanocomposites. J. Mater. Res. 2002, 17, 1412–1418. https://doi.org/10.1557/JMR.2002.0210.Search in Google Scholar

54. Zhang, Z.; Chen, D. L. Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength. Scr. Mater. 2006, 54 (7), 1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017.Search in Google Scholar

55. Huo, S.; Xie, L.; Xiang, J.; Pang, S.; Hu, F.; Umer, U. Atomic-level Study on Mechanical Properties and Strengthening Mechanisms of Al/SiC Nano-Composites. Appl. Phys. A. 2018, 124 (2), 209. https://doi.org/10.1007/s00339-018-1624-3.Search in Google Scholar

56. Mattli, M. R.; Matli, P. R.; Khan, A.; Abdelatty, R. H.; Yusuf, M.; Ashraf, A. A.; Kotalo, R. G.; Shakoor, R. A. Study of Microstructural and Mechanical Properties of Al/SiC/TiO2 Hybrid Nanocomposites Developed by Microwave Sintering. Crystals 2021, 11 (9), 1078. https://doi.org/10.3390/cryst11091078.Search in Google Scholar

57. Saba, F.; Zhang, F.; Liu, S.; Liu, T. Reinforcement Size Dependence of Mechanical Properties and Strengthening Mechanisms in Diamond Reinforced Titanium Metal Matrix Composites. Compos. Part B. 2019, 167, 7–19. https://doi.org/10.1016/j.compositesb.2018.12.014.Search in Google Scholar

58. Krishnan, P.; Lakshmanan, P.; Palani, S.; Arumugam, A.; Kulothungan, S. Analyzing the Hardness and Wear Properties of SiC and hBN Reinforced Aluminum Hybrid Nanocomposites. Mater. Today Proc. 2022, 62 (2), 566–571. https://doi.org/10.1016/j.matpr.2022.03.593.Search in Google Scholar

59. Zhang, Z.; Chen, D. L. Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites. Mater. Sci. Eng. A. 2008, 483–484, 148–152. https://doi.org/10.1016/j.msea.2006.10.184.Search in Google Scholar

60. Scattergood, R. O.; Koch, C. C.; Murty, K. L.; Brenner, D. Strengthening Mechanisms in Nanocrystalline Alloys. Mater. Sci. Eng. A. 2008, 493 (1-2), 3–11. https://doi.org/10.1016/j.msea.2007.04.132.Search in Google Scholar

61. Morris, D. G. Strengthening Mechanisms in Nanocrystalline Metals. In Nanostructured Metals and Alloys; Woodhead Publishing: Oxford, Cambridge, Philadelphia, New Delhi, 2011; pp 229–328.10.1533/9780857091123.3.299Search in Google Scholar

62. Facchini, D. Biomedical Nanocrystalline Metals and Alloys, Structure, Properties and Applications. In Nanomedicine; Woodhead Publishing: Oxford, Cambridge, Philadelphia, New Delhi, 2012; pp 36–67.10.1533/9780857096449.1.36Search in Google Scholar

63. Whang, S. H. Nanostructured Metals and Alloys Processing, Microstructure, Mechanical Properties and Applications. Metals and Surface Engineering; Woodhead publishing: Oxford, Cambridge, Philadelphia, New Delhi, 2011.10.1533/9780857091123Search in Google Scholar

64. Liu, S.; Wang, Y.; Muthuramalingam, T.; Anbuchezhiyan, G. Effect of B4C and MOS2 Reinforcement on Micro Structure and Wear Properties of Aluminum Hybrid Composite for Automotive Applications. Compos. Part B. 2019, 176. https://doi.org/10.1016/j.compositesb.2019.107329.Search in Google Scholar

65. Kumar, L. R.; Saravanakumar, A.; Bhuvaneswari, V.; Gokul, G.; Kumar, D. D.; Karunan, M. P. J. Optimization of Wear Behaviour for AA2219-MoS2 Metal Matrix Composites in Dry and Lubricated Condition. Mater. Today Proc. 2020, 27 (3), 2645–2649. https://doi.org/10.1016/j.matpr.2019.11.087.Search in Google Scholar

66. Gong, H.; Yu, C.; Zhang, L.; Xie, G.; Guo, D.; Luo, J. Intelligent Lubricating Materials: A Review. Compos. Part B. 2020, 202. https://doi.org/10.1016/j.compositesb.2020.108450.Search in Google Scholar

67. Yang, Z.; Bhowmick, S.; Sen, F. G.; Alpas, A. T. Microscopic and Atomistic Mechanisms of Sliding Friction of MoS2: Effects of Undissociated and Dissociated H2O. Appl. Surf. Sci. 2021, 563. https://doi.org/10.1016/j.apsusc.2021.150270.Search in Google Scholar

68. Shi, X.; Zhai, W.; Xu, Z.; Wang, M.; Yao, J.; Siyuan, S.; Wang, Y. Synergetic Lubricating Effect of MoS2 and Ti3SiC2 on Tribological Properties of NiAl Matrix Self-Lubricating Composites over a Wide Temperature Range. Mater. Des. 2014, 55, 93–103. https://doi.org/10.1016/j.matdes.2013.09.072.Search in Google Scholar

69. Zhang, Y.; Li, P.; Ji, L.; Liu, X.; Wan, H.; Chen, L.; Li, H.; Jin, Z. Tribological Properties of MoS2 Coating for Ultra-long Wear-Life and Low Coefficient of Friction Combined with Additive G-C3n4 in Air. Friction 2021, 9, 789–801. https://doi.org/10.1007/s40544-020-0374-3.Search in Google Scholar

70. Kannur, K. H.; Huminiuc, T.; Yaqub, T. B.; Polcar, T.; Pupier, C.; Héau, C.; Cavaleiro, A. An Insight on the MoS2 Tribo-Film Formation to Determine the Friction Performance of Mo-S-N Sputtered Coatings. Surf. Coatings Technol. 2021, 408. https://doi.org/10.1016/j.surfcoat.2020.126791.Search in Google Scholar

71. Kumar, R. K.; Vinoth, K. S.; Kavitha, M. Dry Sliding Wear Performance of AA7075/MoS2 Composite Materials. Journal of Engg. Research. 2022, 10 (4B), 238–254. https://doi.org/10.36909/jer.11447.Search in Google Scholar

72. Nayak, B.; Sahu, R. K.; Karthikeyan, P. Study of Tensile and Compressive Behaviour of the In-House Synthesized Al-Alloy Nano Composite. IOP Conf. Ser. Mater. Sci. Eng. 2018, 012070. https://doi.org/10.1088/1757-899X/402/1/012070.Search in Google Scholar

73. Şenel, M. C.; Gürbüz, M. Synergistic Effect of Graphene/boron Nitride Binary Nanoparticles on Aluminum Hybrid Composite Properties. Adv. Compos. Hybrid Mater. 2021, 4 (4), 1248–1260. https://doi.org/10.1007/s42114-021-00209-0.Search in Google Scholar

Received: 2024-01-31
Accepted: 2024-04-01
Published Online: 2024-12-04
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. 5th International Conference on Processing and Characterization of Materials 2023 (ICPCM 2023)
  4. Original Papers
  5. Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction
  6. A complex impedance spectroscopy study on PVDF/PANI/CoFe2O4 composites
  7. Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study
  8. Synthesis and characterization of hydroxyapatite from Ariidea fish bone as reinforcement material for (chios mastic gum: papyrus vaccine pollen) bio composite bony scaffold
  9. Optimization of the process parameter of lean-grade self-reducing pellets by surface response modelling
  10. From raw materials to functional material: synthesis and piezoelectric characterization of PIN–PT binary relaxor material
  11. Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route
  12. Effect of beeswax on the physico-mechanical properties of poly (butylene adipate terephthalate)/poly lactic acid blend films
  13. Effect of Y2O3, TiO2, ZrO2 dispersion on oxidation resistance of W–Ni–Nb–Mo alloys
  14. Multifunctional characterisation of pressureless sintered Al2O3 –CaTiO3 nanocomposite
  15. Silicon–carbon superhydrophobic nano-structure for next generation semiconductor industry
  16. Interrelation between mechanical and electromagnetic radiation emission parameters with variable notch-width ratios under tensile fracture in silicon steel
  17. Effect of tool rotation and welding speed on microstructural and mechanical properties of dissimilar AA6061-T6 and AA5083-H12 joint in friction stir welding
  18. Effect of bentonite and molasses binder content on physical and mechanical properties of green and fired mill scale pellets
  19. FA-GGBFS based geopolymer concrete incorporating CMRW and SS as fine and coarse aggregates
  20. Characteristic study of intra woven green fibers for structural application
  21. An experimental investigation by electrochemical impedance spectroscopy for the study of mechanism of copper electrodeposition from an acidic bath
  22. Bažant-Le-Kirane Paradox of fatigue failure in engineering materials
  23. Thermal modeling and analysis of laser transmission welding of polypropylene: process mechanics and parameters
  24. The influence of welding modes on metallic structures processed through WAAM
  25. Ultrasonic metal welding of Al/Cu joints with Ni coating: parametric effects on joint performance and microstructural modifications
  26. News
  27. DGM – Deutsche Gesellschaft für Materialkunde
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0039/pdf
Scroll to top button