Startseite Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties

  • Ekta ORCID logo und Navendu Goswami ORCID logo EMAIL logo
Veröffentlicht/Copyright: 6. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we report a novel method, namely the exploding wire technique, to synthesize tin nanoparticles, utilizing tin wire and plate. The prepared colloidal suspension of silvery-black colour, was centrifuged. The nanoparticles collected after centrifugation were collected, dried and subjected to further grinding to finally obtain the powder nanoparticles. X-ray diffraction analysis reveals tetragonal crystal structure of Sn nanoparticles having lattice parameters a = b = 5.8238 Å and c = 3.1806 Å. The crystallite sizes within the 35–69 nm range were determined through the Debye–Scherrer relation and Williamson–Hall analysis. However, much smaller size Sn nanoparticles of 5–16 nm were observed through field emission scanning electron microscopy, energy dispersive spectroscopy and elemental mapping analyses. The crystal volume and strain were calculated and differential scanning calorimetry measurements determined the reduced value of melting temperature for prepared Sn nanoparticles. The optical processes occurring in prepared nanoparticles were probed with the help of ultraviolet–visible spectroscopy and photoluminescence spectroscopies. Furthermore, Fourier transform infrared spectroscopic studies could identify the functional groups/bondings present in the prepared nanoparticles.


Corresponding author: Navendu Goswami, Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India, E-mail:

Acknowledgments

The authors are grateful to ANRF erstwhile SERB-DST India for kindly supporting this research with a Core Research Grant (File number: CRG/2021/006804). The authors thank the Central instrumentation facility of JIIT Noida for extending their cooperation for DSC characterizations.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This study was financially supported by ANRF erstwhile SERB-DST India through a Core Research Grant (File number: CRG/2021/006804).

  7. Data availability: The data that support the findings of this study are available from the corresponding author, [NG], upon reasonable request.

References

1. Jiang, H.; Moon, K. S.; Dong, H.; Hua, F.; Wong, C. P. Size-Dependent Melting Properties of Tin Nanoparticles. Chem. Phys. Lett. 2006, 429, 492–496. https://doi.org/10.1016/j.cplett.2006.08.027.Suche in Google Scholar

2. Chang-dong, Z.; Yu-lai, G.; Bin, Y.; Qi-jie, Z. Size-Dependent Melting Properties of Sn Nanoparticles by Chemical Reduction Synthesis. Trans. Nonferrous Met. Soc. China 2010, 20, 248–253. https://doi.org/10.1016/S1003-6326(09)60130-8.Suche in Google Scholar

3. Chukka, R. N.; Telu, S.; Nrmr, B.; Chen, L. A Novel Method of Reducing Melting Temperatures in SnAg and SnCu Solder Alloys. J. Mater. Sci.: Mater. Electron. 2011, 22, 281–285. https://doi.org/10.1007/s10854-010-0128-5.Suche in Google Scholar

4. Takagi, M. Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. J. Phys. Soc. Jpn. 1954, 9, 359–363. https://doi/10.1143/JPSJ.9.359.10.1143/JPSJ.9.359Suche in Google Scholar

5. Bachels, T.; Guntherodt, H. J.; Schafe, R. Melting of Isolated Tin Nanoparticles. Phys. Rev. Lett. 2000, 85, 1250. https://doi.org/10.1103/PhysRevLett.85.1250.Suche in Google Scholar PubMed

6. Wang, L.; Zhang, Y.; Bian, X.; Chen, Y. Melting of Cu Nanoclusters by Molecular Dynamics Simulation. Phys. Lett. A 2003, 310, 197–2002. https://doi/10.1016/S0375-9601(03)00263-9.10.1016/S0375-9601(03)00263-9Suche in Google Scholar

7. Quass, M.; Shyjumon, I.; Hippler, R.; Wulff, H. Melting of Small Silver Clusters Investigated by Ht-Gixrd. Z. Kristallog. 2007, 26, 267–272. https://doi.org/10.1524/9783486992540-042.Suche in Google Scholar

8. Sun, J.; Simon, S. L. The Melting Behavior of Aluminum Nanoparticles. Thermochim. Acta 2007, 463, 32–40. https://doi.org/10.1016/j.tca.2007.07.007.Suche in Google Scholar

9. Peters, K. F.; Cohen, J. B.; Chung, Y. W. Melting of Pb Nanocrystals. Phys. Rev. B 1998, 13430. https://doi.org/10.1103/PhysRevB.57.13430.Suche in Google Scholar

10. Dippel, M.; Maier, A.; Gimple, V.; Wider, H.; Evenson, W. E.; Rasera, R. L.; Schatz, G. Size-Dependent Melting of Self-Assembled Indium Nanostructures. Phys. Rev. Lett. 2001, 87, 095505. https://doi.org/10.1103/PhysRevLett.87.095505.Suche in Google Scholar PubMed

11. Olson, E. A.; Efremov, M. Y.; Zhang, M.; Zhang, Z.; Allen, L. H. Size-Dependent Melting of Bi Nanoparticles. J. Appl. Phys. 2005, 97, 034304. https://doi.org/10.1063/1.1832741.Suche in Google Scholar

12. Wang, Y.; Teitel, S.; Dellago, S. Melting and Equilibrium Shape of Icosahedral Gold Nanoparticles. Chem. Phys. Lett. 2004, 257–261. https://doi.org/10.1016/j.cplett.2004.06.139.Suche in Google Scholar

13. Elango, G.; Roopan, S. M. Efficacy of SnO2 Nanoparticles Toward Photocatalytic Degradation of Methylene Blue Dye. J. Photochem. Photobiol. B 2016, 155, 34–38. https://doi.org/10.1016/j.jphotobiol.2015.12.010.Suche in Google Scholar PubMed

14. Elango, G.; Kumaran, S. M.; Kumar, S. S.; Muthuraja, S.; Roopan, S. M. Green Synthesis of SnO2 Nanoparticles and its Photocatalytic Activity of Phenolsulfonphthalein Dye. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 145, 176–180. https://doi.org/10.1016/j.saa.2015.03.033.Suche in Google Scholar PubMed

15. Senthilkumar, S.; Ashok, M.; Kashinath, L.; Sanjeeviraja, C.; Rajendran, A. Phytosynthesis and Characterization of TiO2 Nanoparticles Using Diospyros Ebenum Leaf Extract and Their Antibacterial and Photocatalytic Degradation of Crystal Violet. Nanomed. Res. 2017, 6. https://doi.org/10.1080/23080477.2017.1410012.Suche in Google Scholar

16. Amrute, A. P.; Bellis, J. D.; Felderhoff, M.; Schüth, F. Mechanochemical Synthesis of Catalytic Materials. Chem. Eur. J. 2021, 27, 6819–6847. https://doi.org/10.1002/chem.202004583.Suche in Google Scholar PubMed PubMed Central

17. Peralta-Videa, J. R.; Huang, Y.; Parsons, J. G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J. A.; Gardea-Torresdey, J. L. Plant-based Green Synthesis of Metallic Nanoparticles: Scientific Curiosity or a Realistic Alternative to Chemical Synthesis. Nanotechnol. Environ. Eng. 2016, 1. https://doi.org/10.1007/s41204-016-0004-5.Suche in Google Scholar

18. Jianrong, Z.; Gao, L. Synthesis and Characterization of Nanocrystalline Tin Oxide by Sol–Gel Method. J. Solid State Chem. 2004, 177, 1425–1430. https://doi.org/10.1016/j.jssc.2003.11.024.Suche in Google Scholar

19. Singh, A. K.; Nakate, U. T. Microwave Synthesis, Characterization and Photocatalytic Properties of SnO2 Nanoparticles. Adv. Nanoparticles 2013, 2, 66–70. https://doi.org/10.4236/anp.2013.21012.Suche in Google Scholar

20. Kumar, R. PhD thesis, Gas Sensing Properties of Nanostructured Tin/Zinc Oxide Thin Films; Thapar University: India, 2016.Suche in Google Scholar

21. Cukrov, L. M.; McCormick, P. G.; Galatsis, K.; Wlodarski, W. Gas Sensing Properties of Nanosized Tin Oxide Synthesised by Mechanochemical Processing. Sensor. Actuator. B: Chem. 2001, 77, 491–495. https://doi.org/10.1016/S0925-4005(01)00751-1.Suche in Google Scholar

22. Ahn, H. J.; Choi, H. C.; Park, K. W.; Kim, S. B.; Sung, Y. E. Investigation of the Structural and Electrochemical Properties of Size-Controlled SnO2 Nanoparticles. J. Phys. Chem. B 2004, 108, 9815–9820. https://doi.org/10.1021/jp035769n.Suche in Google Scholar

23. Goswami, N.; Sen, P. Water-induced Stabilization of ZnS Nanoparticles. Solid State Commun. 2004, 132, 791–794. https://doi.org/10.1016/j.ssc.2004.09.022.Suche in Google Scholar

24. Surendra, S.; Goswami, N. Modelling of the Exploding Wire Technique, a Novel Approach Utilized for the Synthesis of Nanomaterials. Int. J. Mater. Res. 2023, 114, 738–745. https://doi.org/10.1515/ijmr-2021-8713.Suche in Google Scholar

25. Ke, F. S.; Huang, L.; Cai, J. S.; Gang, S. Electroplating Synthesis and Electrochemical Properties of Macroporous Sn–Cu Alloy Electrode for Lithium-Ion Batteries. Electrochim. Acta 2007, 52, 6741–6747. https://doi.org/10.1016/j.electacta.2007.04.100.Suche in Google Scholar

26. Zeng, J.; Peng, C.; Wang, R.; Cao, C.; Wang, X.; Liua, J. Magnetic Sn/SnO/FeSn2 Nanocomposite as a High-Performance Anode Material for Lithium-Ion Batteries. Powder Technol. 2020, 364, 719–724. https://doi.org/10.1016/j.powtec.2020.01.057.Suche in Google Scholar

27. Gaspar, D.; Pimentel, A. C.; Mendes, M. J.; Mateus, T.; Falcao, B. P.; Leitao, J. P.; Soares, J.; Araujo, A.; Vicente, A.; Filonovich, S. A.; Aguas, H.; Martins, R.; Ferreira, I. Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of A-Si:H Thin Films. Plasmonics 2014, 9. https://doi.org/10.1007/s11468-014-9709-0.Suche in Google Scholar

28. Mazzetta, I.; Viti, L.; Rigoni, F.; Quaranta, S.; Gasparotto, A.; Barucca, G.; Palma, F.; Riello, P.; Cattaruzza, E.; Asgari, M.; Vitiello, M.; Irrera, F. Microwave Driven Synthesis of Narrow Bandgap Alpha-Tin Nanoparticles on Silicon. Mater. Des. 2022, 217, 110632. https://doi.org/10.1016/j.matdes.2022.110632.Suche in Google Scholar

29. Kryshtal, A.; Bogatyrenko, S.; Khshanovska, O. Direct Imaging of Surface Melting on a Single Sn Nanoparticle. Nano Lett. 2023, 23, 6354–6359. https://doi.org/10.1021/acs.nanolett.3c00943.Suche in Google Scholar PubMed PubMed Central

30. Mandal, T. K.; Ram, S. Synthesis of PbZr0.7Ti0.3O3 Nanoparticles in a New Tetragonal Crystal Structure with a Polymer Precursor. Mater. Lett. 2003, 57, 2432–2442. https://doi.org/10.1016/S0167-577X(02)01249-1.Suche in Google Scholar

31. Böer, K. W.; Pohl, U. W Semiconductor Physics, 2nd ed.; Springer Nature: Cham, Switzerland, 2023. https://doi.org/10.1007/978-3-031-18286-0.Suche in Google Scholar

32. Shu, M.; Mahdavi, B.; Balciunaitiene, A.; Goorani, S.; Mahdavi, A. A. Novel Green Synthesis of Tin Nanoparticles by Medicinal Plant: Chemical Characterization and Determination of Cytotoxicity, Cutaneous Wound Healing and Antioxidant Properties. Micro Nano Lett. 2023, 18. https://doi.org/10.1049/mna2.12157.Suche in Google Scholar

33. Chang, S. S.; Park, D. K. Novel Sn Powder Preparation by Spark Processing and Luminescence Properties. Mater. Sci. Eng. 2002, B95, 55–60; https://doi.org/10.1016/s0921-5107(02)00162-9.Suche in Google Scholar

34. Goswami, N.; Sen, P. Photoluminescent Properties of ZnS Nanoparticles Prepared by Electro-Explosion of Zn Wires. J. Nanopart. Res. 2007, 9, 513–517. https://doi.org/10.1007/s11051-006-9137-y.Suche in Google Scholar

35. Goswami, N.; Sen, P. Water-driven Stabilization of Cadmium Sulphide Nanoparticles. Appl. Surf. Sci. 2017, 425, 576–584. https://doi.org/10.1016/j.apsusc.2017.07.071.Suche in Google Scholar

Received: 2024-01-29
Accepted: 2024-08-14
Published Online: 2025-05-06
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. ICEAM 2023 and ICHEAM-2024
  4. Reviews
  5. Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
  6. Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
  7. Original Papers
  8. Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
  9. Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
  10. Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
  11. Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
  12. Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
  13. Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
  14. Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
  15. Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
  16. Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
  17. News
  18. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0035/html
Button zum nach oben scrollen