Home Structural, dielectric and ferroelectric characteristics of (Bi0.9Gd0.1)(Ni0.5Ti0.5)O3 ceramic
Article
Licensed
Unlicensed Requires Authentication

Structural, dielectric and ferroelectric characteristics of (Bi0.9Gd0.1)(Ni0.5Ti0.5)O3 ceramic

  • Smitashree Singh , Alok Shukla EMAIL logo , Nitin Kumar and Ram Naresh Prasad Choudhary
Published/Copyright: May 26, 2025
Become an author with De Gruyter Brill

Abstract

Gadolinium (10 %)-modified bismuth nickel titanate (BNTO) ceramic, was synthesized by a solid-state reaction method. The as-synthesized ceramic was calcined at a temperature of 900 °C. The current work shows the synthesis, structural and dielectric characteristics of (Bi0.9Gd0.1)(Ni0.5Ti0.5)O3 ceramic. Further characteristics were investigated using analytical tools such as X-ray diffraction and a phase-sensitive meter. The surface morphology of the ceramic compound was confirmed through scanning electron microscope analysis. Energy-dispersive X-ray analysis confirms the purity of the sample with an equivalent amount of weight and atomic percentage. The dielectric and impedance properties of ceramic were analyzed by computing the dielectric response over a selected range of frequency and temperature. The P–E loop tracer was used to study the ferroelectric nature of the sample. Based on the enhancement of its electrical properties, this ceramic may be useful for various electronic applications.


Corresponding author: Alok Shukla, Department of Physics, National Institute of Technology Mizoram, Aizawl, Mizoram, 796012, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Smitashree Singh: writing– original draft, data collection, analysis; Alok Shukla: Methodology, Reviewing and Editing; Nitin Kumar: writing– Reviewing and Editing; Ram Naresh Prasad Choudhary: Conceptualization, Methodology. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Hur, N.; Park, S.; Sharma, P. A.; Ahn, J. S.; Guha, S.; Cheong, S. W. Electric Polarization Reversal and Memory in a Multiferroic Material. Nature 2004, 429 (6990), 392–395. https://doi.org/10.1038/nature02572.Search in Google Scholar PubMed

2. Spaldin, N. A.; Fiebig, M. The Renaissance of Magnetoelectric Multiferroics. Science 2005, 309, 391–392. https://doi.org/10.1126/science.1113357.Search in Google Scholar PubMed

3. Fiebig, M. Revival of the Magnetoelectric Effect. J. Phys. D: Appl. Phys. 2005, 38, R123–R152. https://doi.org/10.1088/0022-3727/38/8/R01.Search in Google Scholar

4. Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and Magnetoelectric Materials. Nature 2006, 442, 759–765. https://doi.org/10.1038/nature05023.Search in Google Scholar PubMed

5. Gao, R. L.; Zhang, Q. M.; Xu, Z. Y.; Wang, Z. H.; Cai, W.; Chen, G.; Deng, X. L.; Cao, X. L.; Luo, X. D.; Fu, C. L. Enhanced Multiferroic Properties in BiFeO3–BaTiO3–BiMnO3 Ternary Solid Solution Ceramics. Nanoscale 2018, 10, 11750–11759. https://doi.org/10.1039/C8NR02368A.Search in Google Scholar PubMed

6. Pattanayak, S.; Parida, B. N.; Das, P. R.; Choudhary, R. N. P. Structural, Dielectric and Impedance Studies of BiFeO3–PbTiO3 System. Appl. Phys. A 2013, 112, 387. https://doi.org/10.1007/s00339-012-7412-6.Search in Google Scholar

7. Lan, C.; Jiang, Y.; Yang, S. Synthesis and Ferroelectric Properties of BiFeO3–BaTiO3 Ceramics. J. Mater. Sci. 2011, 46, 734–738. https://doi.org/10.1007/s10853-010-4805-9.Search in Google Scholar

8. Vopsaroiu, M.; Cain, M. G.; Sreenivasulu, G.; Srinivasan, G.; Balbashov, A. M. Magnetic and Magnetoelectric Properties of BiFeO3–BaTiO3 Ceramics. Mater. Lett. 2012, 66, 282–284. https://doi.org/10.1016/j.matlet.2011.08.094.Search in Google Scholar

9. Pattanayak, S.; Choudhary, R. N. P.; Pattanayak, D. Impedance and Modulus Spectroscopy Studies of Multiferroic BiFeO3–PbTiO3 System. J. Mater. Sci.: Mater. Electron. 2014, 25, 3854–3861. https://doi.org/10.1007/s10854-014-2099-4.Search in Google Scholar

10. Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. New Tools for Crystal Structure Analysis from Powder Diffraction Data in EXPO. J. Appl. Crystallogr. 2013, 46, 1231–1235. https://doi.org/10.1107/S0021889813013113.Search in Google Scholar

11. Rahaman, M. D.; Mia, M. D.; Khan, M. N. I.; Hossain, A. K. M. A. Structural, Dielectric, Magnetic and Impedance Spectroscopic Properties of Gd and Mn Co-doped BiFeO3 Ceramics. J. Magn. Magn. Mater. 2016, 404, 238–249. https://doi.org/10.1016/j.jmmm.2015.12.029.Search in Google Scholar

12. Pradhan, D. K.; Choudhary, R. N. P.; Rinaldi, C.; Katiyar, R. S. Relaxation and Conduction Mechanism of BiFeO3 Ceramic. J. Appl. Phys. 2009, 106, 024102. https://doi.org/10/1063/1.3158121.10.1063/1.3158121Search in Google Scholar

13. Koops, C. G. On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies. Phys. Rev. 1951, 83, 121–124. https://doi.org/10.1103/PhysRev.83.121.Search in Google Scholar

14. Sen, S.; Choudhary, R. N. P. Structural, Electrical and Optical Properties of Ba(Ti1−xSnx)O3 Ceramics. Mater. Chem. Phys. 2004, 87, 256–263. https://doi.org/10.1016/j.matchemphys.2004.03.005.Search in Google Scholar

15. Purohit, V.; Choudhary, R. N. P. Dielectric and Ferroelectric Characteristics of Sm-Substituted BiFeO3 Ceramics. Mater. Sci. Eng. B 2019, 243, 30–37. https://doi.org/10.1016/j.mseb.2019.03.017.Search in Google Scholar

16. Purohit, V.; Padhee, R.; Choudhary, R. N. P. Impedance and Electrical Modulus Study of Bi1−xSmxFeO3 (X = 0.05, 0.1) Multiferroic Ceramics. J. Mater. Sci.: Mater. Electron. 2018, 29, 5224–5232. https://doi.org/10.1007/s10854-017-8487-9.Search in Google Scholar

17. Macdonald, J. R.; Johnson, W. B. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley: Hoboken, 2005.Search in Google Scholar

18. James, A. R.; Prakash, C.; Prasad, G. Studies on Ferroelectric and Dielectric Properties of BaTiO3–SrTiO3 Ceramics. J. Phys. D: Appl. Phys. 2006, 39, 1635. https://doi.org/10.1088/0022-3727/39/8/024.Search in Google Scholar

19. Suman, C. K.; Prasad, K.; Choudhary, P. N. P. Impedance Spectroscopy and Modulus Formalism of BaZrO3–BaTiO3 Ceramics. J. Mater. Sci. 2006, 41, 369. https://doi.org/10.1007/S10853-005-2620-5.Search in Google Scholar

20. Hirose, N.; West, A. R. Characterization of Barrier Layers in Internally Oxidized BaTiO3. J. Am. Ceram. Soc. 1996, 79, 1633–1641. https://doi.org/10.1111/j.1151-2916.1996.tb08775.x.Search in Google Scholar

Received: 2024-01-10
Accepted: 2025-04-01
Published Online: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0017/html
Scroll to top button