Abstract
The aim of this work is to compare the responsive behaviour of titanium, niobium and titanium–niobium alloy during alkaline treatment in forming alkaline titanate layer and their resultant bioactive properties. Titanium and niobium powder mixture with composition in the beta region was pressed at 550 MPa and sintered at 1,200 °C for 2 h. The alloy was soaked in potassium hydroxide aqueous solution at 60 °C for 24 h with different concentrations of 0.5 M and 5 M. The effect of post sintering-heat treatment was investigated by annealing the treated alloy at 600 °C for 2 h. X-ray diffraction analysis and Fourier transform infrared spectroscopy analysis were used to evaluate the chemical composition and the functional group of material on the treated alloy surface respectively. Immersion in Hanks solution for 1 day resulted in traces of calcium and phosphate on alloy surfaces treated in different concentrations of alkali as well as post-heat treatment. The cell viability evaluation using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on the new beta-Ti alloy with potassium-based titanate layer demonstrated potassium hydroxide treatment with a 5 M concentration after post-heat treatment significantly improved cell proliferation, which is a prerequisite for bone mineral apatite deposition.
Acknowledgments
Special thanks go to the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code FRGS/1/2018/TK05/USM/01/5.
-
Research ethics: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Nur Adila Amira Basry was involved in writing the manuscript and data collection. Khairul Anuar Shariff contributed in technical discussion. Hussain Zuhailawati was involved in experimental design, technical discussion, writing the manuscript and principle investigators of the listed grants.
-
Competing interests: The authors declare that they have no competing interest.
-
Research funding: Fundamental Research Grant Scheme with Project Code FRGS/1/2018/TK05/USM/01/5.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Bhardwaj, T.; Shukla, M.; Paul, C. P.; Bindra, K. S. Direct Energy Deposition – Laser Additive Manufacturing of Titanium-Molybdenum Alloy: Parametric Studies, Microstructure and Mechanical Properties. J. Alloys Compd. 2019, 787, 1238–1248. https://doi.org/10.1016/J.JALLCOM.2019.02.121.Search in Google Scholar
2. Gummadi, J.; Alanka, S. A Review on Titanium and Titanium Alloys with Other Metals for Biomedical Applications Prepared by Powder Metallurgy Techniques. Mater. Today Proc. 2023, 387, 2214–7853. https://doi.org/10.1016/J.MATPR.2023.04.387.Search in Google Scholar
3. Lai, Y.-S.; Chen, W.-C.; Huang, C.-H.; Cheng, C.-K.; Chan, K.-K.; Chang, T.-K. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction. PLoS One 2015, 10 (5), e0127293. https://doi.org/10.1371/journal.pone.0127293.Search in Google Scholar PubMed PubMed Central
4. Lee, T.; Lee, S.; Kim, I. S.; Moon, Y. H.; Kim, H. S.; Park, C. H. Breaking the Limit of Young’s Modulus in Low-Cost Ti–Nb–Zr Alloy for Biomedical Implant Applications. J. Alloys Compd. 2020, 828, 154401. https://doi.org/10.1016/J.JALLCOM.2020.154401.Search in Google Scholar
5. Shitara, K.; Yokota, K.; Yoshiya, M.; Umeda, J.; Kondoh, K. First-Principles Design and Experimental Validation of β-Ti Alloys with High Solid-Solution Strengthening and Low Elasticities. Mater. Sci. Eng. A 2022, 843, 143053. https://doi.org/10.1016/J.MSEA.2022.143053.Search in Google Scholar
6. Soro, N.; Brodie, E. G.; Abdal-hay, A.; Alali, A. Q.; Kent, D.; Dargusch, M. S. Additive Manufacturing of Biomimetic Titanium-Tantalum Lattices for Biomedical Implant Applications. Mater. Des. 2022, 218, 110688. https://doi.org/10.1016/J.MATDES.2022.110688.Search in Google Scholar
7. Ahmad, F. N.; Hussain, Z. Morphology and Mechanical Properties Fabricated from Ti, Nb and HA by Powder Metallurgy Method. J. Phys. Conf. Ser. 2018, 1082. https://doi.org/10.1088/1742-6596/1082/1/012083.Search in Google Scholar
8. Farrahnoor, A.; Zuhailawati, H. Effects of Hydroxyapatite Addition on the Bioactivity of Ti-Nb Alloy Matrix Composite Fabricated via Powder Metallurgy Process. Mater. Today Commun. 2021, 27, 102209. https://doi.org/10.1016/J.MTCOMM.2021.102209.Search in Google Scholar
9. Arumugam, M. K.; Hussein, M. A.; Adesina, A. Y.; Al-Aqeeli, N. In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti-20Nb-13Zr Alloys for Orthopedic Applications. Coatings 2019, 9 (5), 344. https://doi.org/10.3390/COATINGS9050344.Search in Google Scholar
10. Ouarhim, W.; Zari, N.; Bouhfid, R.; Qaiss, A. E. K. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. Mech. Phys. Test. Biocomposites, Fibre-Reinforced Compos. Hybrid Compos. 2018, 43–60. https://doi.org/10.1016/B978-0-08-102292-4.00003-5.Search in Google Scholar
11. Du, J.; Liu, X.; He, D.; Liu, P.; Ma, F.; Li, Q.; Feng, N. Influence of Alkali Treatment on Ti6Al4V Alloy and the HA Coating Deposited by Hydrothermal-Electrochemical Methods. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2014, 43 (4), 830–835. https://doi.org/10.1016/s1875-5372(14)60093-x.Search in Google Scholar
12. Zhao, G. L.; Xia, L.; Zhong, B.; Wu, S. S.; Song, L.; Wen, G. W. Effect of Alkali Treatments on Apatite Formation of Microarc-Oxidized Coating on Titanium Alloy Surface. Trans. Nonferrous Met. Soc. China 2015, 25 (4), 1151–1157. https://doi.org/10.1016/S1003-6326(15)63710-4.Search in Google Scholar
13. Kim, C.; Kendall, M. R.; Miller, M. A.; Long, C. L.; Larson, P. R.; Humphrey, M. B.; Madden, A. S.; Tas, A. C. Comparison of Titanium Soaked in 5 M NaOH or 5 M KOH Solutions. Mater. Sci. Eng. C 2013, 33 (1), 327–339. https://doi.org/10.1016/j.msec.2012.08.047.Search in Google Scholar PubMed PubMed Central
14. Huynh, V.; Ngo, N. K.; Golden, T. D. Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications. Int. J. Biomater. 2019, 2019. https://doi.org/10.1155/2019/3806504.Search in Google Scholar PubMed PubMed Central
15. Rahimipour, S.; Salahinejad, E.; Sharifi, E.; Nosrati, H.; Tayebi, L. Structure, Wettability, Corrosion and Biocompatibility of Nitinol Treated by Alkaline Hydrothermal and Hydrophobic Functionalization for Cardiovascular Applications. Appl. Surf. Sci. 2020, 506, 144657. https://doi.org/10.1016/J.APSUSC.2019.144657.Search in Google Scholar
16. Yang, Y. J.; Fan, X. D.; Wang, F. L.; Qi, H. N.; Yue, Y.; Ma, M. Z.; Zhang, X. Y.; Li, G.; Liu, R. P. Effect of Nb Content on Corrosion Behavior of Ti-Based Bulk Metallic Glass Composites in Different Solutions. Appl. Surf. Sci. 2019, 471, 108–117. https://doi.org/10.1016/J.APSUSC.2018.11.190.Search in Google Scholar
17. Barriobero-Vila, P.; Requena, G.; Warchomicka, F.; Stark, A.; Schell, N.; Buslaps, T. Phase Transformation Kinetics during Continuous Heating of a β-Quenched Ti–10V–2Fe–3Al Alloy. J. Mater. Sci. 2015, 50 (3), 1412–1426. https://doi.org/10.1007/s10853-014-8701-6.Search in Google Scholar
18. Abdal-hay, A.; Agour, M.; Kim, Y. K.; Lee, M. H.; Hassan, M. K.; El-Ainin, H. A.; Hamdy, A. S.; Ivanovski, S. Magnesium-Particle/Polyurethane Composite Layer Coating on Titanium Surfaces for Orthopedic Applications. Eur. Polym. J. 2019, 112, 555–568. https://doi.org/10.1016/J.EURPOLYMJ.2018.10.012.Search in Google Scholar
19. Guo, Z.; Jiang, N.; Chen, C.; Zhu, S.; Zhang, L.; Li, Y. Surface Bioactivation Through the Nanostructured Layer on Titanium Modified by Facile HPT Treatment. Sci. Rep. 2017, 7 (1), 1–11. https://doi.org/10.1038/s41598-017-04395-0.Search in Google Scholar PubMed PubMed Central
20. Vilardell, A. M.; Cinca, N.; Garcia-Giralt, N.; Müller, C.; Dosta, S.; Sarret, M.; Cano, I. G.; Nogués, X.; Guilemany, J. M. In-Vitro Study of Hierarchical Structures: Anodic Oxidation and Alkaline Treatments onto Highly Rough Titanium Cold Gas Spray Coatings for Biomedical Applications. Mater. Sci. Eng. C 2018, 91, 589–596. https://doi.org/10.1016/J.MSEC.2018.05.071.Search in Google Scholar PubMed
21. Chen, X.; Zhu, R. F.; Gao, H.; Xu, W. L.; Xiao, G. Y.; Chen, C. Z.; Lu, Y. P. A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment. Surf. Coating. Technol. 2020, 385, 125362. https://doi.org/10.1016/j.surfcoat.2020.125362.Search in Google Scholar
22. Todea, M.; Vulpoi, A.; Popa, C.; Berce, P.; Simon, S. Effect of Different Surface Treatments on Bioactivity of Porous Titanium Implants. J. Mater. Sci. Technol. 2019, 35 (3), 418–426. https://doi.org/10.1016/J.JMST.2018.10.004.Search in Google Scholar
23. Barique, M. A.; Tsuchida, E.; Ohira, A.; Tashiro, K. Effect of Elevated Temperatures on the States of Water and Their Correlation with the Proton Conductivity of Nafion. ACS Omega 2017, 3 (1), 349–360. https://doi.org/10.1021/ACSOMEGA.7B01765/SUPPL_FILE/AO7B01765_SI_001.PDF.Search in Google Scholar
24. Norziehana, N.; Isa, C.; Mohd, Y.; Yury, N. Electrochemical Deposition and Characterization of Hydroxyapatite (HAp) on Titanium Substrate. APCBEE Procedia 2012, 3, 46–52. https://doi.org/10.1016/j.apcbee.2012.06.044.Search in Google Scholar
25. Shahriyari, F.; Razaghian, A.; Taghiabadi, R.; Peirovi, A.; Amini, A. Effect of Friction Hardening Pre-Treatment on Increasing Cytocompatibility of Alkali Heat-Treated Ti-6Al-4V Alloy. Surf. Coating. Technol. 2018, 353, 148–157. https://doi.org/10.1016/J.SURFCOAT.2018.08.051.Search in Google Scholar
26. Pattanayak, D. K.; Yamaguchi, S.; Matsushita, T.; Kokubo, T. Effect of Heat Treatments on Apatite-Forming Ability of NaOH- and HCl-Treated Titanium Metal. J. Mater. Sci. Mater. Med. 2011, 22 (2), 273–278. https://doi.org/10.1007/s10856-010-4218-y.Search in Google Scholar PubMed
27. Godley, R.; Starosvetsky, D.; Gotman, I. Bonelike Apatite Formation on Niobium Metal Treated in Aqueous NaOH. J. Mater. Sci. Mater. Med. 2005, 15 (10), 1073–1077. https://doi.org/10.1023/B:JMSM.0000046388.07961.81.Search in Google Scholar PubMed
28. Priyadarshini, B.; Ramya, S.; Shinyjoy, E.; Kavitha, L.; Gopi, D.; Vijayalakshmi, U. Structural, Morphological and Biological Evaluations of Cerium Incorporated Hydroxyapatite Sol–Gel Coatings on Ti-6Al-4V for Orthopaedic Applications. J. Mater. Res. Technol. 2021, 12, 1319–1338. https://doi.org/10.1016/J.JMRT.2021.03.009.Search in Google Scholar
29. Hara, Y.; Komasa, S.; Yoshimine, S.; Nishizaki, H.; Okazaki, J. Effect of Nano Modified Titanium Surface on Adsorption of Rat Periodontal Ligament Cells. J. Osaka Dent. Univ. 2018, 52 (1), 37–44. https://doi.org/10.18905/JODU.52.1_37.Search in Google Scholar
30. Hanib, N. H.; Hamzah, F.; Omar, Z.; Subuki, I. Pencirian Rawatan Alkali-Haba Ke Atas Permukaan Aloi Titanium. Malays. J. Anal. Sci. 2016, 20 (6), 1429–1436. https://doi.org/10.17576/mjas-2016-2006-23.Search in Google Scholar
31. Shanmugam, L.; Kazemi, M. E.; Yang, J. Improved Bonding Strength Between Thermoplastic Resin and Ti Alloy with Surface Treatments by Multi-Step Anodization and Single-Step Micro-Arc Oxidation Method: A Comparative Study. ES Mater. Manuf. 2019, 3, 57–65. https://doi.org/10.30919/ESMM5F207.Search in Google Scholar
32. Rakngarm, A.; Yukio, A. E.; Ae, M.; Mutoh, Y. Formation of Hydroxyapatite Layer on Bioactive Ti and Ti-6Al-4V by Simple Chemical Technique. J. Mater. Sci. Mater. Med. 2008, 19 (5), 1953–1961. https://doi.org/10.1007/s10856-007-3285-1.Search in Google Scholar PubMed
33. Kokubo, T.; Yamaguchi, S. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions. Front. Bioeng. Biotechnol. 2015, 176. https://doi.org/10.3389/fbioe.2015.00176.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Morphology controlled fabrication of porous magnesium oxide nanostructures for the efficient elimination of methyl orange
- Fe78Si9B13/MnO2 composite: a magnetic and efficient Fenton-like catalyst in degradation of methyl orange under activation of H2O2
- Effect of different activating agents on carbon derived from Tinospora cordifolia for EDLC application
- Bioactive surface modification of Ti–Nb alloy by alkaline treatment in potassium hydroxide solution
- Characterizing sliding wear behavior of A1100/AlFe (p) composites produced via repeated fold-forging and annealing
- Effect of laser ablation on mechanical performance of graphene-filled glass fibre reinforced polymer repaired composites
- Mechanical and tribological assessment of PEEK and PEEK based polymer composites for artificial hip joints
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Morphology controlled fabrication of porous magnesium oxide nanostructures for the efficient elimination of methyl orange
- Fe78Si9B13/MnO2 composite: a magnetic and efficient Fenton-like catalyst in degradation of methyl orange under activation of H2O2
- Effect of different activating agents on carbon derived from Tinospora cordifolia for EDLC application
- Bioactive surface modification of Ti–Nb alloy by alkaline treatment in potassium hydroxide solution
- Characterizing sliding wear behavior of A1100/AlFe (p) composites produced via repeated fold-forging and annealing
- Effect of laser ablation on mechanical performance of graphene-filled glass fibre reinforced polymer repaired composites
- Mechanical and tribological assessment of PEEK and PEEK based polymer composites for artificial hip joints
- News
- DGM – Deutsche Gesellschaft für Materialkunde