Home Bioactive surface modification of Ti–Nb alloy by alkaline treatment in potassium hydroxide solution
Article
Licensed
Unlicensed Requires Authentication

Bioactive surface modification of Ti–Nb alloy by alkaline treatment in potassium hydroxide solution

  • Nur Adila Amira Basry , Hussain Zuhailawati ORCID logo EMAIL logo and Khairul Anuar Shariff
Published/Copyright: September 30, 2024
Become an author with De Gruyter Brill

Abstract

The aim of this work is to compare the responsive behaviour of titanium, niobium and titanium–niobium alloy during alkaline treatment in forming alkaline titanate layer and their resultant bioactive properties. Titanium and niobium powder mixture with composition in the beta region was pressed at 550 MPa and sintered at 1,200 °C for 2 h. The alloy was soaked in potassium hydroxide aqueous solution at 60 °C for 24 h with different concentrations of 0.5 M and 5 M. The effect of post sintering-heat treatment was investigated by annealing the treated alloy at 600 °C for 2 h. X-ray diffraction analysis and Fourier transform infrared spectroscopy analysis were used to evaluate the chemical composition and the functional group of material on the treated alloy surface respectively. Immersion in Hanks solution for 1 day resulted in traces of calcium and phosphate on alloy surfaces treated in different concentrations of alkali as well as post-heat treatment. The cell viability evaluation using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on the new beta-Ti alloy with potassium-based titanate layer demonstrated potassium hydroxide treatment with a 5 M concentration after post-heat treatment significantly improved cell proliferation, which is a prerequisite for bone mineral apatite deposition.


Corresponding author: Hussain Zuhailawati, School of Materials & Mineral Resources Engineeering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia, E-mail:

Acknowledgments

Special thanks go to the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code FRGS/1/2018/TK05/USM/01/5.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Nur Adila Amira Basry was involved in writing the manuscript and data collection. Khairul Anuar Shariff contributed in technical discussion. Hussain Zuhailawati was involved in experimental design, technical discussion, writing the manuscript and principle investigators of the listed grants.

  3. Competing interests: The authors declare that they have no competing interest.

  4. Research funding: Fundamental Research Grant Scheme with Project Code FRGS/1/2018/TK05/USM/01/5.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Bhardwaj, T.; Shukla, M.; Paul, C. P.; Bindra, K. S. Direct Energy Deposition – Laser Additive Manufacturing of Titanium-Molybdenum Alloy: Parametric Studies, Microstructure and Mechanical Properties. J. Alloys Compd. 2019, 787, 1238–1248. https://doi.org/10.1016/J.JALLCOM.2019.02.121.Search in Google Scholar

2. Gummadi, J.; Alanka, S. A Review on Titanium and Titanium Alloys with Other Metals for Biomedical Applications Prepared by Powder Metallurgy Techniques. Mater. Today Proc. 2023, 387, 2214–7853. https://doi.org/10.1016/J.MATPR.2023.04.387.Search in Google Scholar

3. Lai, Y.-S.; Chen, W.-C.; Huang, C.-H.; Cheng, C.-K.; Chan, K.-K.; Chang, T.-K. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction. PLoS One 2015, 10 (5), e0127293. https://doi.org/10.1371/journal.pone.0127293.Search in Google Scholar PubMed PubMed Central

4. Lee, T.; Lee, S.; Kim, I. S.; Moon, Y. H.; Kim, H. S.; Park, C. H. Breaking the Limit of Young’s Modulus in Low-Cost Ti–Nb–Zr Alloy for Biomedical Implant Applications. J. Alloys Compd. 2020, 828, 154401. https://doi.org/10.1016/J.JALLCOM.2020.154401.Search in Google Scholar

5. Shitara, K.; Yokota, K.; Yoshiya, M.; Umeda, J.; Kondoh, K. First-Principles Design and Experimental Validation of β-Ti Alloys with High Solid-Solution Strengthening and Low Elasticities. Mater. Sci. Eng. A 2022, 843, 143053. https://doi.org/10.1016/J.MSEA.2022.143053.Search in Google Scholar

6. Soro, N.; Brodie, E. G.; Abdal-hay, A.; Alali, A. Q.; Kent, D.; Dargusch, M. S. Additive Manufacturing of Biomimetic Titanium-Tantalum Lattices for Biomedical Implant Applications. Mater. Des. 2022, 218, 110688. https://doi.org/10.1016/J.MATDES.2022.110688.Search in Google Scholar

7. Ahmad, F. N.; Hussain, Z. Morphology and Mechanical Properties Fabricated from Ti, Nb and HA by Powder Metallurgy Method. J. Phys. Conf. Ser. 2018, 1082. https://doi.org/10.1088/1742-6596/1082/1/012083.Search in Google Scholar

8. Farrahnoor, A.; Zuhailawati, H. Effects of Hydroxyapatite Addition on the Bioactivity of Ti-Nb Alloy Matrix Composite Fabricated via Powder Metallurgy Process. Mater. Today Commun. 2021, 27, 102209. https://doi.org/10.1016/J.MTCOMM.2021.102209.Search in Google Scholar

9. Arumugam, M. K.; Hussein, M. A.; Adesina, A. Y.; Al-Aqeeli, N. In Vitro Corrosion and Bioactivity Performance of Surface-Treated Ti-20Nb-13Zr Alloys for Orthopedic Applications. Coatings 2019, 9 (5), 344. https://doi.org/10.3390/COATINGS9050344.Search in Google Scholar

10. Ouarhim, W.; Zari, N.; Bouhfid, R.; Qaiss, A. E. K. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. Mech. Phys. Test. Biocomposites, Fibre-Reinforced Compos. Hybrid Compos. 2018, 43–60. https://doi.org/10.1016/B978-0-08-102292-4.00003-5.Search in Google Scholar

11. Du, J.; Liu, X.; He, D.; Liu, P.; Ma, F.; Li, Q.; Feng, N. Influence of Alkali Treatment on Ti6Al4V Alloy and the HA Coating Deposited by Hydrothermal-Electrochemical Methods. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 2014, 43 (4), 830–835. https://doi.org/10.1016/s1875-5372(14)60093-x.Search in Google Scholar

12. Zhao, G. L.; Xia, L.; Zhong, B.; Wu, S. S.; Song, L.; Wen, G. W. Effect of Alkali Treatments on Apatite Formation of Microarc-Oxidized Coating on Titanium Alloy Surface. Trans. Nonferrous Met. Soc. China 2015, 25 (4), 1151–1157. https://doi.org/10.1016/S1003-6326(15)63710-4.Search in Google Scholar

13. Kim, C.; Kendall, M. R.; Miller, M. A.; Long, C. L.; Larson, P. R.; Humphrey, M. B.; Madden, A. S.; Tas, A. C. Comparison of Titanium Soaked in 5 M NaOH or 5 M KOH Solutions. Mater. Sci. Eng. C 2013, 33 (1), 327–339. https://doi.org/10.1016/j.msec.2012.08.047.Search in Google Scholar PubMed PubMed Central

14. Huynh, V.; Ngo, N. K.; Golden, T. D. Surface Activation and Pretreatments for Biocompatible Metals and Alloys Used in Biomedical Applications. Int. J. Biomater. 2019, 2019. https://doi.org/10.1155/2019/3806504.Search in Google Scholar PubMed PubMed Central

15. Rahimipour, S.; Salahinejad, E.; Sharifi, E.; Nosrati, H.; Tayebi, L. Structure, Wettability, Corrosion and Biocompatibility of Nitinol Treated by Alkaline Hydrothermal and Hydrophobic Functionalization for Cardiovascular Applications. Appl. Surf. Sci. 2020, 506, 144657. https://doi.org/10.1016/J.APSUSC.2019.144657.Search in Google Scholar

16. Yang, Y. J.; Fan, X. D.; Wang, F. L.; Qi, H. N.; Yue, Y.; Ma, M. Z.; Zhang, X. Y.; Li, G.; Liu, R. P. Effect of Nb Content on Corrosion Behavior of Ti-Based Bulk Metallic Glass Composites in Different Solutions. Appl. Surf. Sci. 2019, 471, 108–117. https://doi.org/10.1016/J.APSUSC.2018.11.190.Search in Google Scholar

17. Barriobero-Vila, P.; Requena, G.; Warchomicka, F.; Stark, A.; Schell, N.; Buslaps, T. Phase Transformation Kinetics during Continuous Heating of a β-Quenched Ti–10V–2Fe–3Al Alloy. J. Mater. Sci. 2015, 50 (3), 1412–1426. https://doi.org/10.1007/s10853-014-8701-6.Search in Google Scholar

18. Abdal-hay, A.; Agour, M.; Kim, Y. K.; Lee, M. H.; Hassan, M. K.; El-Ainin, H. A.; Hamdy, A. S.; Ivanovski, S. Magnesium-Particle/Polyurethane Composite Layer Coating on Titanium Surfaces for Orthopedic Applications. Eur. Polym. J. 2019, 112, 555–568. https://doi.org/10.1016/J.EURPOLYMJ.2018.10.012.Search in Google Scholar

19. Guo, Z.; Jiang, N.; Chen, C.; Zhu, S.; Zhang, L.; Li, Y. Surface Bioactivation Through the Nanostructured Layer on Titanium Modified by Facile HPT Treatment. Sci. Rep. 2017, 7 (1), 1–11. https://doi.org/10.1038/s41598-017-04395-0.Search in Google Scholar PubMed PubMed Central

20. Vilardell, A. M.; Cinca, N.; Garcia-Giralt, N.; Müller, C.; Dosta, S.; Sarret, M.; Cano, I. G.; Nogués, X.; Guilemany, J. M. In-Vitro Study of Hierarchical Structures: Anodic Oxidation and Alkaline Treatments onto Highly Rough Titanium Cold Gas Spray Coatings for Biomedical Applications. Mater. Sci. Eng. C 2018, 91, 589–596. https://doi.org/10.1016/J.MSEC.2018.05.071.Search in Google Scholar PubMed

21. Chen, X.; Zhu, R. F.; Gao, H.; Xu, W. L.; Xiao, G. Y.; Chen, C. Z.; Lu, Y. P. A High Bioactive Alkali-Treated Titanium Surface Induced by Induction Heat Treatment. Surf. Coating. Technol. 2020, 385, 125362. https://doi.org/10.1016/j.surfcoat.2020.125362.Search in Google Scholar

22. Todea, M.; Vulpoi, A.; Popa, C.; Berce, P.; Simon, S. Effect of Different Surface Treatments on Bioactivity of Porous Titanium Implants. J. Mater. Sci. Technol. 2019, 35 (3), 418–426. https://doi.org/10.1016/J.JMST.2018.10.004.Search in Google Scholar

23. Barique, M. A.; Tsuchida, E.; Ohira, A.; Tashiro, K. Effect of Elevated Temperatures on the States of Water and Their Correlation with the Proton Conductivity of Nafion. ACS Omega 2017, 3 (1), 349–360. https://doi.org/10.1021/ACSOMEGA.7B01765/SUPPL_FILE/AO7B01765_SI_001.PDF.Search in Google Scholar

24. Norziehana, N.; Isa, C.; Mohd, Y.; Yury, N. Electrochemical Deposition and Characterization of Hydroxyapatite (HAp) on Titanium Substrate. APCBEE Procedia 2012, 3, 46–52. https://doi.org/10.1016/j.apcbee.2012.06.044.Search in Google Scholar

25. Shahriyari, F.; Razaghian, A.; Taghiabadi, R.; Peirovi, A.; Amini, A. Effect of Friction Hardening Pre-Treatment on Increasing Cytocompatibility of Alkali Heat-Treated Ti-6Al-4V Alloy. Surf. Coating. Technol. 2018, 353, 148–157. https://doi.org/10.1016/J.SURFCOAT.2018.08.051.Search in Google Scholar

26. Pattanayak, D. K.; Yamaguchi, S.; Matsushita, T.; Kokubo, T. Effect of Heat Treatments on Apatite-Forming Ability of NaOH- and HCl-Treated Titanium Metal. J. Mater. Sci. Mater. Med. 2011, 22 (2), 273–278. https://doi.org/10.1007/s10856-010-4218-y.Search in Google Scholar PubMed

27. Godley, R.; Starosvetsky, D.; Gotman, I. Bonelike Apatite Formation on Niobium Metal Treated in Aqueous NaOH. J. Mater. Sci. Mater. Med. 2005, 15 (10), 1073–1077. https://doi.org/10.1023/B:JMSM.0000046388.07961.81.Search in Google Scholar PubMed

28. Priyadarshini, B.; Ramya, S.; Shinyjoy, E.; Kavitha, L.; Gopi, D.; Vijayalakshmi, U. Structural, Morphological and Biological Evaluations of Cerium Incorporated Hydroxyapatite Sol–Gel Coatings on Ti-6Al-4V for Orthopaedic Applications. J. Mater. Res. Technol. 2021, 12, 1319–1338. https://doi.org/10.1016/J.JMRT.2021.03.009.Search in Google Scholar

29. Hara, Y.; Komasa, S.; Yoshimine, S.; Nishizaki, H.; Okazaki, J. Effect of Nano Modified Titanium Surface on Adsorption of Rat Periodontal Ligament Cells. J. Osaka Dent. Univ. 2018, 52 (1), 37–44. https://doi.org/10.18905/JODU.52.1_37.Search in Google Scholar

30. Hanib, N. H.; Hamzah, F.; Omar, Z.; Subuki, I. Pencirian Rawatan Alkali-Haba Ke Atas Permukaan Aloi Titanium. Malays. J. Anal. Sci. 2016, 20 (6), 1429–1436. https://doi.org/10.17576/mjas-2016-2006-23.Search in Google Scholar

31. Shanmugam, L.; Kazemi, M. E.; Yang, J. Improved Bonding Strength Between Thermoplastic Resin and Ti Alloy with Surface Treatments by Multi-Step Anodization and Single-Step Micro-Arc Oxidation Method: A Comparative Study. ES Mater. Manuf. 2019, 3, 57–65. https://doi.org/10.30919/ESMM5F207.Search in Google Scholar

32. Rakngarm, A.; Yukio, A. E.; Ae, M.; Mutoh, Y. Formation of Hydroxyapatite Layer on Bioactive Ti and Ti-6Al-4V by Simple Chemical Technique. J. Mater. Sci. Mater. Med. 2008, 19 (5), 1953–1961. https://doi.org/10.1007/s10856-007-3285-1.Search in Google Scholar PubMed

33. Kokubo, T.; Yamaguchi, S. Growth of Novel Ceramic Layers on Metals via Chemical and Heat Treatments for Inducing Various Biological Functions. Front. Bioeng. Biotechnol. 2015, 176. https://doi.org/10.3389/fbioe.2015.00176.Search in Google Scholar PubMed PubMed Central

Received: 2023-12-10
Accepted: 2024-05-10
Published Online: 2024-09-30
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0359/pdf
Scroll to top button