Startseite Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein

  • Tripti Singh und Ashwani Mathur EMAIL logo
Veröffentlicht/Copyright: 1. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The increasing production of protein-rich waste, primarily from the household and food industries, associated with the growing global population has imposed a negative environmental burden on society at large. Protein waste is a growing international concern, with more unsegregated waste released from developing countries. This work explored the sorption behavior of amorphous plant extract of Humulus lupulus, towards bovine serum albumin as a representative model protein. The adsorbed proteins analyzed using scanning electron microscopy, revealed irregular beads masking the surface cues and changing the surface smoothness, further validated by atomic force microscopy. The atomic force microscopy analysis showed an increase in the surface potential of pre-adsorbed material (−60.2 mV to 42.5 mV) compared to post-adsorbed complex (−736 mV to 640 mV) suggesting the protein interaction on the plant surface. Differential scanning calorimetry indicated the possible interaction between protein and surface which is responsible for showing a shift in the enthalpy pattern of the surface pre- and post-adsorption. Change in enthalpy pattern, higher surface potential, and shift in Fourier-transform infrared spectroscopy binding pattern indicates an interaction between plant surface and protein that was further validated and confirmed using the adsorption isotherm. The adsorption isotherm towards bovine serum albumin protein followed the Freundlich isotherm with k and n values of 1.143 and 1.157, respectively. The Freundlich isotherm pattern observed for the material has suggested H. lupulus plant extract as a suitable surface for protein adsorption. The study opens the avenue for the adsorption kinetics of different proteins and establishing the plant extract as a suitable remediation solution for environmental sustainability.


Correspondonding author: Ashwani Mathur, Department of Biotechnology, Jaypee Institute of Information Technology, Noida A-10, Sector-62, Noida-201309, Uttar Pradesh, India, E-mail:

Acknowledgments

The authors acknowledge the Council of Scientific and Industrial Research–Central Electronics Engineering Research Institute(CSIR–CEERI), Pilani, Rajasthan, Central Research Facility (CRF), Indian Institute of Technology (IIT), Delhi, Department of Textile and Fibre Engineering, Indian Institute of Technology (IIT), Delhi, for providing all the necessary support.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. LaPelusa, A.; Kaushik, R. Physiology, Proteins. In Stat Pearls, Treasure Island (FL); Stat Pearls Publishing: Treasure Island Florida, USA, 2022.Suche in Google Scholar

2. Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7 (1), 72–77; https://doi.org/10.1016/s0958-1669(96)80098-x.Suche in Google Scholar PubMed PubMed Central

3. Jain, K. K. An Overview of Drug Delivery Systems. Methods Mol. Biol. 2020, 1–54; https://doi.org/10.1007/978-1-4939-9798-5_1.Suche in Google Scholar PubMed

4. Scopes, R. K. Overview of Protein Purification and Characterization. In Current Protocols in Protein Science; Wiley Publishing; Hoboken, New Jersey, USA, 2001.Suche in Google Scholar

5. Mitra, S. J. Surf. Sci. Techno. 2020, 36, 7–38. https://doi.org/10.18311/jsst/2020/23282.Suche in Google Scholar

6. Latour, R. A. Colloids Surf. B. 2020, 191, 110992. https://doi.org/10.1016/j.colsurfb.2020.110992.Suche in Google Scholar PubMed PubMed Central

7. Duarte, D. S.; Luzardo, F. H. M.; Velasco, F. G.; de Almeida, O. N.; Bedon, G. D. R. Z.; Nascimento, G. G.; Andrade, T. B. V.; Salay, L. C. J. Environ. Polym. Degrad. 2023, 1–15. https://doi.org/10.1007/s10924-023-02790-5.Suche in Google Scholar PubMed PubMed Central

8. Kurniawan, T. A.; Chan, G. Y.; Lo, W. H.; Babel, S. Sci. Total Environ. 2006, 366, 409–426. https://doi.org/10.1016/j.scitotenv.2005.10.001.Suche in Google Scholar PubMed

9. Sud, D.; Mahajan, G.; Kaur, M. P. Bioresour. Technol. 2008, 99 (14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064.Suche in Google Scholar PubMed

10. Adeniyi, A. G.; Ighalo, J. O. J. Environ. Chem. Eng. 2019, 7 (3), 103100; https://doi.org/10.1016/j.jece.2019.103100.Suche in Google Scholar

11. Anastopoulos, I.; Robalds, A.; Tran, H. N.; Mitrogiannis, D.; Giannakoudakis, D. A.; Bandegharaei, A. H.; Dotto, G. L. Environ. Chem. Lett. 2019, 17, 755–766. https://doi.org/10.1007/s10311-018-00829-.Suche in Google Scholar

12. An, H. Water Res. 2001, 35 (15), 3551–3556; https://doi.org/10.1016/S0043-1354(01)00099-9.Suche in Google Scholar PubMed

13. Anastopoulos, I.; Bhatnagar, A.; Bikiaris, D. N.; Kyzas, G. Z. Int. J. Mol. Sci. 2017, 18 (1), 114. https://doi.org/10.3390/ijms18010114.Suche in Google Scholar PubMed PubMed Central

14. Babatunde, E.; Akolo, S. A.; Ighalo, J. O.; Kovo, A. S. 3rd International Engineering Conference: Minna, Nigeria, 2019.Suche in Google Scholar

15. Isah, U. A.; Yusuf, A. I. Adsorption of Lead Ions on Groundnut Shell Activated Carbon. Der Chem. Sin. 2012, 3, 1511–1515. www.pelagiaresearchlibrary.com.Suche in Google Scholar

16. Babarinde, A.; Onyiaocha, G. O. Chem. Int. 2016, 2 (3).Suche in Google Scholar

17. Mutavdžić Pavlović, D.; Ćurković, L.; Macan, J.; Žižek, K. Clean (Weinh), 2017, 45 (12), 1700082. https://doi.org/10.1002/clen.201700082.Suche in Google Scholar

18. Krishna, C. A Research on Cocoa Pod Husk Activated Carbon for Textile Industrial Wastewater Colour Removal. Int. J. Res. Eng. Technol. 2014, 3, 731–737.10.15623/ijret.2014.0315137Suche in Google Scholar

19. Cruz, G.; Pirilä, M.; Huuhtanen, M.; Carrión, L.; Alvarenga, E.; Keiski, R. L. J. Civil. Environ. Engg. 2012, 2, 109; https://doi.org/10.4172/2165-784X.1000109.Suche in Google Scholar

20. Linda, H.; Munaf, E.; Zein, R. J. Chem. Pharm. Res. 2015, 7 (10), 79–89. www.jocpr.com.Suche in Google Scholar

21. Eletta, O.; Ighalo, O. J. J. Res.Inf. in Civ. Eng. 2019, 16 (1), 2479–2510; https://doi.org/10.13140/RG.2.2.20511.61604.Suche in Google Scholar

22. Boving, B.; Klement, J.; Rowell, R.; Xing, B. Mol. Cryst. Liq. 2008, 483 (1), 339–347; https://doi.org/10.1080/15421400801918146.Suche in Google Scholar

23. Afroze, S.; Sen, T. K.; Ang, H. M. Proc. Saf. Environ. Prot. 2016, 102, 336–352; https://doi.org/10.1016/j.psep.2016.04.009.Suche in Google Scholar

24. Eletta, O. A. A.; Ayandele, F. O.; Adeniyi, A. G.; Ighalo, J. O. Proceedings of the 49th NSChE Annual Conference: Kaduna, Nigeria, 2019.Suche in Google Scholar

25. Perendija, J.; Ljubić, V.; Popović, M.; Milošević, D.; Arsenijević, Z.; Đuriš, M.; Kovač, S.; Cvetković, S. J. Mol. Liq. 2024, 394, 123770. https://doi.org/10.1016/j.molliq.2023.123770.Suche in Google Scholar

26. Sivolobova, N.; Gracheva, N.; Zheltobryukhov, V. IOP Conf. Ser.: Earth Environ. Sci. 2019, 272 (3), 032012; https://doi.org/10.1088/1755-1315/272/3/032012.Suche in Google Scholar

27. Wang, Q.; Guo, Q.; Wenlong, N.; Wu, L.; Gong, W.; Yan, S.; Nishinari, K.; Zhao, M. Food Hydrocoll. 2022 (127), 107503. https://doi.org/10.1016/j.foodhyd.2022.107503.Suche in Google Scholar

28. Bradford, M. M. Anal. Biochem. 1976, 72, 248–254; https://doi.org/10.1016/0003-2697(76)90527-3.Suche in Google Scholar PubMed

29. Lin, M.; Xiang, D.; Chen, X.; Huo, H. J. Agric. Food Chem. 2019, 67 (30), 8291–8302. https://doi.org/10.1021/acs.jafc.9b03780.Suche in Google Scholar PubMed

30. Bridelli, M. G.; Ciati, A.; Crippa, C. R. Biophys. Chem. 2006, 119 (2), 137–145. https://doi.org/10.1016/j.bpc.2005.06.004.Suche in Google Scholar PubMed

31. Belter, P. A., In Ed., Bioseparations: Downstream processing for Biotechnology. USA: A Wiley- Interscience Publication, 1988.Suche in Google Scholar

32. Mishra, P. M.; Barick, L.; Devi, A. P.; Swain, K. K. Environ. Technol. 2021, 42 (5), 801–812. https://doi.org/10.1080/09593330.2019.1645741.Suche in Google Scholar PubMed

33. Ighalo, J. O.; Adeniyi, A. G. J. Water Process. Eng. 2020, 35, 101228; https://doi.org/10.1016/j.jwpe.2020.101228.Suche in Google Scholar

34. John, A. C.; Lara, I. O.; Victor, A.; Oladunni, O. Am.-Euras J. Sci. Res. 2011, 6 (3), 123–130.Suche in Google Scholar

35. Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernández-Calviño, D.; Arias-Estévez, M.; Nóvoa-Muñoz, J. C.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. J. Environ. Manage. 2014, 144, 258–264. https://doi.org/10.1016/j.jenvman.2014.06.008.Suche in Google Scholar PubMed

36. Sun, W., and Selim, H. M., Fate and Transport of Molybdenum in Soils: Kinetic Modeling, In, Advances in Agronomy; Sparks, D. L., Ed.; Academic Press, Elsevier Inc., USA, 164, 2020; pp 51–92. https://doi.org/10.1016/bs.agron.2020.06.002.Suche in Google Scholar

37. Nakamura, K.; Matsumoto, K. J. Membr. Sci. 1998, 145 (1), 119–128. https://doi.org/10.1016/S0376-7388(98)00070-2.Suche in Google Scholar

38. Tian, X.; He, X.; Song, D.; Li, Z.; Liu, H.; Khan, M.; Qiu, L. Int. J. Min. Sci. Technol. 2022, 32 (2), 435–445. https://doi.org/10.1016/j.ijmst.2021.12.008.Suche in Google Scholar

39. Ma, W. B.; Qi Liu, Q.; Ding, Y. H.; Zhu, W. Appl. Clay Sci. 2017, 148, 118–122. https://doi.org/10.1016/j.clay.2017.08.011.Suche in Google Scholar

40. Geng, X.; Chyasnavichyus, M.; Meyers, G.; Wu, D. Prog. Org. Coat. 2019, 126, 168–177. https://doi.org/10.1016/j.porgcoat.2018.10.025.Suche in Google Scholar

41. Huang, L.; Fang, H.; Chen, M. Sci. China Technol. Sci. 2012, 55, 1146–1152. https://doi.org/10.1007/s11431-011-4730-4.Suche in Google Scholar

42. He, X.; Liu, X.; Song, D.; Nie, B. Appl. Surf. Sci. 2019, 483, 713–720. https://doi.org/10.1016/j.apsusc.2019.03.342.Suche in Google Scholar

43. Yao, S.; Jiao, K.; Zhang, K.; Hu, W.; Ding, H.; Li, M.; Pei, W. Chin. Sci. Bull. 2011, 56, 2706–2712. https://doi.org/10.1007/s11434-011-4623-8.Suche in Google Scholar

44. Sujith, K. S.; Ramachandran, C. N. J. Mol. Liq. 2018, 266, 856–863. https://doi.org/10.1016/j.molliq.2018.06.119.Suche in Google Scholar

45. Pinheiro, D.; Devi, K. R. S.; Jose, A.; Bharadwaj, N. R.; Thomas, K. J. J. Environ. Chem. Eng. 2020, 8 (4), 103987. https://doi.org/10.1016/j.jece.2020.103987.Suche in Google Scholar

46. Farkas, J.; Farkas, C. M. J. Therm. Anal. 1996, 47 (6), 1787–1803. https://doi.org/10.1007/BF01980925.Suche in Google Scholar

47. Yamaguchi, A.; Kashimura, C.; Aizawa, M.; Shibuya, Y. ACS Omega 2020, 5 (36), 22993–23001. https://doi.org/10.1021/acsomega.0c02602.Suche in Google Scholar PubMed PubMed Central

48. Feng, L.; Andrade, J. D. J. Biomed. Mater. Res. 1994, 28 (6), 735–743. https://doi.org/10.1002/jbm.820280611.Suche in Google Scholar PubMed

49. Hylton, D. M.; Shalaby, S. W.; Latour, R. A.Jr. J. Biomed. Mater Res. A 2005, 73 A (3), 349–358. https://doi.org/10.1002/jbm.a.30295.Suche in Google Scholar PubMed

50. Sancaktar, E.; Bakan, M.; Chang, I. T.; Satam, S.; Farahati, R. Polym. Test. 2016, 56, 185–191. https://doi.org/10.1016/j.polymertesting.2016.10.011.Suche in Google Scholar

51. Gutierrez-Ortega, A.; Nomen, R.; Sempere, V.; Parra, V.; Montes-Morán, V.; Gonzalez-Olmos, R. Chem. Eng. J. 2022, 435, 134703. https://doi.org/10.1016/j.cej.2022.134703.Suche in Google Scholar

52. León, A.; Rosell, C. M.; Benedito de Barber, C. Eur. Food Res. Technol. 2003, 217 (1), 13–16. https://doi.org/10.1007/s00217-003-0699-y.Suche in Google Scholar

53. Wang, Y.; Zhu, J.; Li, M.; Shao, G.; Wang, H.; Zhang, R. Mater. Des. 2023, 236, 112485. https://doi.org/10.1016/j.matdes.2023.112485.Suche in Google Scholar

54. Yang, S.; Huang, Z.; Hu, Q.; Zhang, Y.; Wang, F.; Wang, H.; Shu, Y. ACS Appl. Electron. Mater. 2022, 4 (9), 4659–4667; https://doi.org/10.1021/acsaelm.2c00878.Suche in Google Scholar

55. Amit; Kumari, S.; Jamwal, R. Food Chem. Adv. 2023, 2, 100203. https://doi.org/10.1016/j.focha.2023.100203.Suche in Google Scholar

56. Carvalho, J. A.; Gaiotti, A. C.; Zanata, C. R.; Fonseca, S.; Giz, M. J.; Pinto, L. M. C.; Camara, G. A. Electrochim. Acta 2023, 443, 141978. https://doi.org/10.1016/j.electacta.2023.141978.Suche in Google Scholar

57. Mongioví, C.; Crini, G.; Gabrion, X.; Placet, V.; Patissier, V. B.; Krystianiak, A.; Durand, S.; Beaugrand, J.; Dorlando, A.; Rivard, C.; Gautier, L.; Ribeiro, A. R. L.; Lacalamita, D.; Martel, B.; Staelens, J. N.; Ivanovska, A.; Kostić, M.; Heintz, O.; Bradu, C.; Raschetti, M.; Crini, N. M. Chem. Eng. J. Chem. Adv. 2022, 10, 100282. https://doi.org/10.1016/j.ceja.2022.100282.Suche in Google Scholar

58. Krishni, R. R.; Foo, K. Y.; Hameed, B. H. Desalin. Water Treat. 2014, 52 (31–33), 6096–6103; https://doi.org/10.1080/19443994.2013.815686.Suche in Google Scholar

59. Todica, M.; Nagy, E. M.; Niculaescu, C.; Stan, O.; Cioica, N.; Pop, C. V. J. Spectrosc., 2016, 1–6. https://doi.org/10.1155/2016/9605312.Suche in Google Scholar

60. Harris, D.; DeBolt, S. PLoS ONE. 2008, 3 (8), e2897. https://doi.org/10.1371/journal.pone.0002897.Suche in Google Scholar PubMed PubMed Central

61. Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. Front. Bioeng. Biotechnol. 2020, 8, 822; https://doi.org/10.3389/fbioe.2020.00822.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijmr-2023-0346).


Received: 2023-11-22
Accepted: 2024-09-17
Published Online: 2025-05-01
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. ICEAM 2023 and ICHEAM-2024
  4. Reviews
  5. Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
  6. Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
  7. Original Papers
  8. Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
  9. Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
  10. Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
  11. Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
  12. Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
  13. Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
  14. Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
  15. Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
  16. Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
  17. News
  18. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0346/html
Button zum nach oben scrollen