Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
Abstract
The increasing production of protein-rich waste, primarily from the household and food industries, associated with the growing global population has imposed a negative environmental burden on society at large. Protein waste is a growing international concern, with more unsegregated waste released from developing countries. This work explored the sorption behavior of amorphous plant extract of Humulus lupulus, towards bovine serum albumin as a representative model protein. The adsorbed proteins analyzed using scanning electron microscopy, revealed irregular beads masking the surface cues and changing the surface smoothness, further validated by atomic force microscopy. The atomic force microscopy analysis showed an increase in the surface potential of pre-adsorbed material (−60.2 mV to 42.5 mV) compared to post-adsorbed complex (−736 mV to 640 mV) suggesting the protein interaction on the plant surface. Differential scanning calorimetry indicated the possible interaction between protein and surface which is responsible for showing a shift in the enthalpy pattern of the surface pre- and post-adsorption. Change in enthalpy pattern, higher surface potential, and shift in Fourier-transform infrared spectroscopy binding pattern indicates an interaction between plant surface and protein that was further validated and confirmed using the adsorption isotherm. The adsorption isotherm towards bovine serum albumin protein followed the Freundlich isotherm with k and n values of 1.143 and 1.157, respectively. The Freundlich isotherm pattern observed for the material has suggested H. lupulus plant extract as a suitable surface for protein adsorption. The study opens the avenue for the adsorption kinetics of different proteins and establishing the plant extract as a suitable remediation solution for environmental sustainability.
Acknowledgments
The authors acknowledge the Council of Scientific and Industrial Research–Central Electronics Engineering Research Institute(CSIR–CEERI), Pilani, Rajasthan, Central Research Facility (CRF), Indian Institute of Technology (IIT), Delhi, Department of Textile and Fibre Engineering, Indian Institute of Technology (IIT), Delhi, for providing all the necessary support.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. LaPelusa, A.; Kaushik, R. Physiology, Proteins. In Stat Pearls, Treasure Island (FL); Stat Pearls Publishing: Treasure Island Florida, USA, 2022.Suche in Google Scholar
2. Hlady, V.; Buijs, J. Protein Adsorption on Solid Surfaces. Curr. Opin. Biotechnol. 1996, 7 (1), 72–77; https://doi.org/10.1016/s0958-1669(96)80098-x.Suche in Google Scholar PubMed PubMed Central
3. Jain, K. K. An Overview of Drug Delivery Systems. Methods Mol. Biol. 2020, 1–54; https://doi.org/10.1007/978-1-4939-9798-5_1.Suche in Google Scholar PubMed
4. Scopes, R. K. Overview of Protein Purification and Characterization. In Current Protocols in Protein Science; Wiley Publishing; Hoboken, New Jersey, USA, 2001.Suche in Google Scholar
5. Mitra, S. J. Surf. Sci. Techno. 2020, 36, 7–38. https://doi.org/10.18311/jsst/2020/23282.Suche in Google Scholar
6. Latour, R. A. Colloids Surf. B. 2020, 191, 110992. https://doi.org/10.1016/j.colsurfb.2020.110992.Suche in Google Scholar PubMed PubMed Central
7. Duarte, D. S.; Luzardo, F. H. M.; Velasco, F. G.; de Almeida, O. N.; Bedon, G. D. R. Z.; Nascimento, G. G.; Andrade, T. B. V.; Salay, L. C. J. Environ. Polym. Degrad. 2023, 1–15. https://doi.org/10.1007/s10924-023-02790-5.Suche in Google Scholar PubMed PubMed Central
8. Kurniawan, T. A.; Chan, G. Y.; Lo, W. H.; Babel, S. Sci. Total Environ. 2006, 366, 409–426. https://doi.org/10.1016/j.scitotenv.2005.10.001.Suche in Google Scholar PubMed
9. Sud, D.; Mahajan, G.; Kaur, M. P. Bioresour. Technol. 2008, 99 (14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064.Suche in Google Scholar PubMed
10. Adeniyi, A. G.; Ighalo, J. O. J. Environ. Chem. Eng. 2019, 7 (3), 103100; https://doi.org/10.1016/j.jece.2019.103100.Suche in Google Scholar
11. Anastopoulos, I.; Robalds, A.; Tran, H. N.; Mitrogiannis, D.; Giannakoudakis, D. A.; Bandegharaei, A. H.; Dotto, G. L. Environ. Chem. Lett. 2019, 17, 755–766. https://doi.org/10.1007/s10311-018-00829-.Suche in Google Scholar
12. An, H. Water Res. 2001, 35 (15), 3551–3556; https://doi.org/10.1016/S0043-1354(01)00099-9.Suche in Google Scholar PubMed
13. Anastopoulos, I.; Bhatnagar, A.; Bikiaris, D. N.; Kyzas, G. Z. Int. J. Mol. Sci. 2017, 18 (1), 114. https://doi.org/10.3390/ijms18010114.Suche in Google Scholar PubMed PubMed Central
14. Babatunde, E.; Akolo, S. A.; Ighalo, J. O.; Kovo, A. S. 3rd International Engineering Conference: Minna, Nigeria, 2019.Suche in Google Scholar
15. Isah, U. A.; Yusuf, A. I. Adsorption of Lead Ions on Groundnut Shell Activated Carbon. Der Chem. Sin. 2012, 3, 1511–1515. www.pelagiaresearchlibrary.com.Suche in Google Scholar
16. Babarinde, A.; Onyiaocha, G. O. Chem. Int. 2016, 2 (3).Suche in Google Scholar
17. Mutavdžić Pavlović, D.; Ćurković, L.; Macan, J.; Žižek, K. Clean (Weinh), 2017, 45 (12), 1700082. https://doi.org/10.1002/clen.201700082.Suche in Google Scholar
18. Krishna, C. A Research on Cocoa Pod Husk Activated Carbon for Textile Industrial Wastewater Colour Removal. Int. J. Res. Eng. Technol. 2014, 3, 731–737.10.15623/ijret.2014.0315137Suche in Google Scholar
19. Cruz, G.; Pirilä, M.; Huuhtanen, M.; Carrión, L.; Alvarenga, E.; Keiski, R. L. J. Civil. Environ. Engg. 2012, 2, 109; https://doi.org/10.4172/2165-784X.1000109.Suche in Google Scholar
20. Linda, H.; Munaf, E.; Zein, R. J. Chem. Pharm. Res. 2015, 7 (10), 79–89. www.jocpr.com.Suche in Google Scholar
21. Eletta, O.; Ighalo, O. J. J. Res.Inf. in Civ. Eng. 2019, 16 (1), 2479–2510; https://doi.org/10.13140/RG.2.2.20511.61604.Suche in Google Scholar
22. Boving, B.; Klement, J.; Rowell, R.; Xing, B. Mol. Cryst. Liq. 2008, 483 (1), 339–347; https://doi.org/10.1080/15421400801918146.Suche in Google Scholar
23. Afroze, S.; Sen, T. K.; Ang, H. M. Proc. Saf. Environ. Prot. 2016, 102, 336–352; https://doi.org/10.1016/j.psep.2016.04.009.Suche in Google Scholar
24. Eletta, O. A. A.; Ayandele, F. O.; Adeniyi, A. G.; Ighalo, J. O. Proceedings of the 49th NSChE Annual Conference: Kaduna, Nigeria, 2019.Suche in Google Scholar
25. Perendija, J.; Ljubić, V.; Popović, M.; Milošević, D.; Arsenijević, Z.; Đuriš, M.; Kovač, S.; Cvetković, S. J. Mol. Liq. 2024, 394, 123770. https://doi.org/10.1016/j.molliq.2023.123770.Suche in Google Scholar
26. Sivolobova, N.; Gracheva, N.; Zheltobryukhov, V. IOP Conf. Ser.: Earth Environ. Sci. 2019, 272 (3), 032012; https://doi.org/10.1088/1755-1315/272/3/032012.Suche in Google Scholar
27. Wang, Q.; Guo, Q.; Wenlong, N.; Wu, L.; Gong, W.; Yan, S.; Nishinari, K.; Zhao, M. Food Hydrocoll. 2022 (127), 107503. https://doi.org/10.1016/j.foodhyd.2022.107503.Suche in Google Scholar
28. Bradford, M. M. Anal. Biochem. 1976, 72, 248–254; https://doi.org/10.1016/0003-2697(76)90527-3.Suche in Google Scholar PubMed
29. Lin, M.; Xiang, D.; Chen, X.; Huo, H. J. Agric. Food Chem. 2019, 67 (30), 8291–8302. https://doi.org/10.1021/acs.jafc.9b03780.Suche in Google Scholar PubMed
30. Bridelli, M. G.; Ciati, A.; Crippa, C. R. Biophys. Chem. 2006, 119 (2), 137–145. https://doi.org/10.1016/j.bpc.2005.06.004.Suche in Google Scholar PubMed
31. Belter, P. A., In Ed., Bioseparations: Downstream processing for Biotechnology. USA: A Wiley- Interscience Publication, 1988.Suche in Google Scholar
32. Mishra, P. M.; Barick, L.; Devi, A. P.; Swain, K. K. Environ. Technol. 2021, 42 (5), 801–812. https://doi.org/10.1080/09593330.2019.1645741.Suche in Google Scholar PubMed
33. Ighalo, J. O.; Adeniyi, A. G. J. Water Process. Eng. 2020, 35, 101228; https://doi.org/10.1016/j.jwpe.2020.101228.Suche in Google Scholar
34. John, A. C.; Lara, I. O.; Victor, A.; Oladunni, O. Am.-Euras J. Sci. Res. 2011, 6 (3), 123–130.Suche in Google Scholar
35. Cutillas-Barreiro, L.; Ansias-Manso, L.; Fernández-Calviño, D.; Arias-Estévez, M.; Nóvoa-Muñoz, J. C.; Fernández-Sanjurjo, M. J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. J. Environ. Manage. 2014, 144, 258–264. https://doi.org/10.1016/j.jenvman.2014.06.008.Suche in Google Scholar PubMed
36. Sun, W., and Selim, H. M., Fate and Transport of Molybdenum in Soils: Kinetic Modeling, In, Advances in Agronomy; Sparks, D. L., Ed.; Academic Press, Elsevier Inc., USA, 164, 2020; pp 51–92. https://doi.org/10.1016/bs.agron.2020.06.002.Suche in Google Scholar
37. Nakamura, K.; Matsumoto, K. J. Membr. Sci. 1998, 145 (1), 119–128. https://doi.org/10.1016/S0376-7388(98)00070-2.Suche in Google Scholar
38. Tian, X.; He, X.; Song, D.; Li, Z.; Liu, H.; Khan, M.; Qiu, L. Int. J. Min. Sci. Technol. 2022, 32 (2), 435–445. https://doi.org/10.1016/j.ijmst.2021.12.008.Suche in Google Scholar
39. Ma, W. B.; Qi Liu, Q.; Ding, Y. H.; Zhu, W. Appl. Clay Sci. 2017, 148, 118–122. https://doi.org/10.1016/j.clay.2017.08.011.Suche in Google Scholar
40. Geng, X.; Chyasnavichyus, M.; Meyers, G.; Wu, D. Prog. Org. Coat. 2019, 126, 168–177. https://doi.org/10.1016/j.porgcoat.2018.10.025.Suche in Google Scholar
41. Huang, L.; Fang, H.; Chen, M. Sci. China Technol. Sci. 2012, 55, 1146–1152. https://doi.org/10.1007/s11431-011-4730-4.Suche in Google Scholar
42. He, X.; Liu, X.; Song, D.; Nie, B. Appl. Surf. Sci. 2019, 483, 713–720. https://doi.org/10.1016/j.apsusc.2019.03.342.Suche in Google Scholar
43. Yao, S.; Jiao, K.; Zhang, K.; Hu, W.; Ding, H.; Li, M.; Pei, W. Chin. Sci. Bull. 2011, 56, 2706–2712. https://doi.org/10.1007/s11434-011-4623-8.Suche in Google Scholar
44. Sujith, K. S.; Ramachandran, C. N. J. Mol. Liq. 2018, 266, 856–863. https://doi.org/10.1016/j.molliq.2018.06.119.Suche in Google Scholar
45. Pinheiro, D.; Devi, K. R. S.; Jose, A.; Bharadwaj, N. R.; Thomas, K. J. J. Environ. Chem. Eng. 2020, 8 (4), 103987. https://doi.org/10.1016/j.jece.2020.103987.Suche in Google Scholar
46. Farkas, J.; Farkas, C. M. J. Therm. Anal. 1996, 47 (6), 1787–1803. https://doi.org/10.1007/BF01980925.Suche in Google Scholar
47. Yamaguchi, A.; Kashimura, C.; Aizawa, M.; Shibuya, Y. ACS Omega 2020, 5 (36), 22993–23001. https://doi.org/10.1021/acsomega.0c02602.Suche in Google Scholar PubMed PubMed Central
48. Feng, L.; Andrade, J. D. J. Biomed. Mater. Res. 1994, 28 (6), 735–743. https://doi.org/10.1002/jbm.820280611.Suche in Google Scholar PubMed
49. Hylton, D. M.; Shalaby, S. W.; Latour, R. A.Jr. J. Biomed. Mater Res. A 2005, 73 A (3), 349–358. https://doi.org/10.1002/jbm.a.30295.Suche in Google Scholar PubMed
50. Sancaktar, E.; Bakan, M.; Chang, I. T.; Satam, S.; Farahati, R. Polym. Test. 2016, 56, 185–191. https://doi.org/10.1016/j.polymertesting.2016.10.011.Suche in Google Scholar
51. Gutierrez-Ortega, A.; Nomen, R.; Sempere, V.; Parra, V.; Montes-Morán, V.; Gonzalez-Olmos, R. Chem. Eng. J. 2022, 435, 134703. https://doi.org/10.1016/j.cej.2022.134703.Suche in Google Scholar
52. León, A.; Rosell, C. M.; Benedito de Barber, C. Eur. Food Res. Technol. 2003, 217 (1), 13–16. https://doi.org/10.1007/s00217-003-0699-y.Suche in Google Scholar
53. Wang, Y.; Zhu, J.; Li, M.; Shao, G.; Wang, H.; Zhang, R. Mater. Des. 2023, 236, 112485. https://doi.org/10.1016/j.matdes.2023.112485.Suche in Google Scholar
54. Yang, S.; Huang, Z.; Hu, Q.; Zhang, Y.; Wang, F.; Wang, H.; Shu, Y. ACS Appl. Electron. Mater. 2022, 4 (9), 4659–4667; https://doi.org/10.1021/acsaelm.2c00878.Suche in Google Scholar
55. Amit; Kumari, S.; Jamwal, R. Food Chem. Adv. 2023, 2, 100203. https://doi.org/10.1016/j.focha.2023.100203.Suche in Google Scholar
56. Carvalho, J. A.; Gaiotti, A. C.; Zanata, C. R.; Fonseca, S.; Giz, M. J.; Pinto, L. M. C.; Camara, G. A. Electrochim. Acta 2023, 443, 141978. https://doi.org/10.1016/j.electacta.2023.141978.Suche in Google Scholar
57. Mongioví, C.; Crini, G.; Gabrion, X.; Placet, V.; Patissier, V. B.; Krystianiak, A.; Durand, S.; Beaugrand, J.; Dorlando, A.; Rivard, C.; Gautier, L.; Ribeiro, A. R. L.; Lacalamita, D.; Martel, B.; Staelens, J. N.; Ivanovska, A.; Kostić, M.; Heintz, O.; Bradu, C.; Raschetti, M.; Crini, N. M. Chem. Eng. J. Chem. Adv. 2022, 10, 100282. https://doi.org/10.1016/j.ceja.2022.100282.Suche in Google Scholar
58. Krishni, R. R.; Foo, K. Y.; Hameed, B. H. Desalin. Water Treat. 2014, 52 (31–33), 6096–6103; https://doi.org/10.1080/19443994.2013.815686.Suche in Google Scholar
59. Todica, M.; Nagy, E. M.; Niculaescu, C.; Stan, O.; Cioica, N.; Pop, C. V. J. Spectrosc., 2016, 1–6. https://doi.org/10.1155/2016/9605312.Suche in Google Scholar
60. Harris, D.; DeBolt, S. PLoS ONE. 2008, 3 (8), e2897. https://doi.org/10.1371/journal.pone.0002897.Suche in Google Scholar PubMed PubMed Central
61. Attarilar, S.; Yang, J.; Ebrahimi, M.; Wang, Q.; Liu, J.; Tang, Y.; Yang, J. Front. Bioeng. Biotechnol. 2020, 8, 822; https://doi.org/10.3389/fbioe.2020.00822.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/ijmr-2023-0346).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- ICEAM 2023 and ICHEAM-2024
- Reviews
- Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
- Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
- Original Papers
- Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
- Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
- Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
- Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
- Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
- Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
- Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
- Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
- Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- ICEAM 2023 and ICHEAM-2024
- Reviews
- Piezo-photocatalyst: unveiling unique catalytic properties of piezoelectric materials for photoreduction of CO2 – a review
- Transforming biomass into batteries: harnessing cellulose and nanocellulose for a sustainable energy storage future
- Original Papers
- Enhanced photocatalytic activity and dye degradation efficiency of La doped BiFeO3–reduced graphene oxide nanocomposite
- Investigation on structural, optical, thermal, and magnetic properties of BiFeO3 nanoparticles synthesized at lower annealing temperature
- Design and optimization of an economic HTL-free, non-toxic double-layer perovskite solar cell for enhanced performance and stability
- Analysis of high pressure response of nano-TiO2 for anatase and rutile phase
- Tin (Sn) nanoparticles: novel synthesis by exploding wire technique and crystalline, optical properties
- Effect of nanowire curviness on the resistance of nanowire-based networks: a computational study
- Determination of yield and BET surface area on varying microwave power, radiation time and flow rate of nitrogen gas during pyrolysis of mustard husk (Brassica juncea)
- Enhanced first-order non-linear optical responses of 4-amino-6-chloro-1,3-benzenedisulfonamide polymer
- Investigation of Humulus lupulus as a novel adsorbent for protein adsorption: assessment of sorption kinetics, surface topology, and thermal properties using BSA as a model protein
- News
- DGM – Deutsche Gesellschaft für Materialkunde