Home Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
Article
Licensed
Unlicensed Requires Authentication

Erosion behaviour of B4C/TiB2/Mo ceramic nozzles

  • Tong Li , Kai Zhang , Qiancheng Liu , Yutong Feng , Kairuo Chen , Yijie Lin , Yichen Zhao , Junlong Sun and Changxia Liu ORCID logo EMAIL logo
Published/Copyright: May 27, 2024
Become an author with De Gruyter Brill

Abstract

B4C/TiB2/Mo ceramic nozzles were obtained by uniaxial hot-pressing. The mechanical properties and erosion behaviour of B4C/TiB2/Mo ceramic nozzles were investigated. Volume erosion rate was used to rank the erosion behaviour of the B4C/TiB2/Mo ceramic nozzles. The relationship between mechanical properties and the volume erosion rate of the nozzles was discussed. X-ray diffraction analysis showed that in-situ reaction to form TiB2 happened during sintering. Scanning electron microscopy was employed to observe the fracture surfaces and eroded surfaces of B4C/TiB2/Mo ceramic nozzles. A model of erodent particles and nozzle during the erosion test was established using the JH2 model. The maximum von Mises stresses on the entry, middle and exit surfaces of the nozzle were calculated. The result showed that the hardness played a key role in influencing the erosion behaviour of B4C/TiB2/Mo ceramic nozzles. Erosion mechanisms of B4C/TiB2/Mo ceramic nozzles at the entry, middle and exit bore area were mainly brittle fracture, fracture & plowing and micro-plowing, respectively.


Corresponding author: Changxia Liu, School of Transportation, Ludong University, Yantai 264025, Shandong Province, P.R. China, E-mail: 

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Natural Science Foundation of China (Grant No. 51505208), Natural Science Foundation of Shandong Province (Grant No. ZR2021ME152 and ZR2022ME169).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Wilson, D. I.; Köhler, H.; Cai, L.; Majschak, J.-P.; Davidson, J. F. Chem. Eng. Sci. 2015, 123, 450–459. https://doi.org/10.1016/j.ces.2014.11.006.Search in Google Scholar

2. Hwang, K. S.; Lee, M. J.; Yi, M. Y.; Lee, J. W. Thin Solid Films 2009, 517 (14), 3866–3869. https://doi.org/10.1016/j.tsf.2009.01.132.Search in Google Scholar

3. Foley, D. Met. Finish. 2010, 108 (11–12), 219–225. https://doi.org/10.1016/S0026-0576(10)80233-8.Search in Google Scholar

4. Ozcelik, Y.; Tercan, A. E.; Yilmazkaya, E.; Ciccu, R.; Costa, G. Constr. Build. Mater. 2011, 25 (11), 4271–4278. https://doi.org/10.1016/j.conbuildmat.2011.04.071.Search in Google Scholar

5. Deng, J. X.; Liu, L. L.; Li, J. F.; Ding, M. W.; Yang, X. F. Int. J. Refract. Met. Hard. Mater. 2007, 25 (2), 130–137. https://doi.org/10.1016/j.ijrmhm.2006.03.006.Search in Google Scholar

6. Liu, C. X.; Zhang, J. H.; Sun, J. L.; Zhang, X. H. J. Eur. Ceram. Soc. 2008, 28 (1), 199–204. https://doi.org/10.1016/j.jeurceramsoc.2007.05.023.Search in Google Scholar

7. Chacon-Nava, J. G.; Stott, F. H.; Torre, S. D. D. L.; Martinez-Villafane, A. Mater. Lett. 2002, 55 (4), 269–273. https://doi.org/10.1016/S0167-577X(01)00659-0.Search in Google Scholar

8. Liu, C. X.; Zhang, J. H.; Sun, J. L.; Zhang, X. H. Wear 2008, 265 (3–4), 286–291. https://doi.org/10.1016/j.wear.2007.10.016.Search in Google Scholar

9. Deng, J. X.; Sun, J. L. Int. J. Refract. Met. Hard Mater. 2008, 26 (3), 128–134. https://doi.org/10.1016/j.ijrmhm.2007.06.001.Search in Google Scholar

10. Liu, C. X.; Sun, J. L. Ceram. Int. 2010, 36 (4), 1297–1302. https://doi.org/10.1016/j.ceramint.2009.12.024.Search in Google Scholar

11. Sun, J. L.; Liu, C. X.; Tian, J.; Feng, B. F. Ceram. Int. 2012, 38 (8), 6599–6605. https://doi.org/10.1016/j.ceramint.2012.05.045.Search in Google Scholar

12. Alemu, W. Y.; Chen, P. L.; Chen, J. K. Ceram. Int. 2023, 49 (24), 40689–40694. https://doi.org/10.1016/j.ceramint.2023.10.052.Search in Google Scholar

13. Gu, M. L.; Huang, C. Z.; Zou, B.; Liu, B. Q. Mater. Sci. Eng. A 2006, 433 (1–2), 39–44. https://doi.org/10.1016/j.msea.2006.07.012.Search in Google Scholar

14. Sun, J. L.; Deng, J. X.; Liu, C. X. J. Mater. Eng. 2007, 1 (1), 42–46. https://doi.org/JournalArticle/5aea1e83c095d713d8a1fb4c.Search in Google Scholar

15. Cook, R. F.; Lawn, B. R. J. Am. Ceram. Soc. 1983, 66 (11), 200–201. https://doi.org/10.1111/j.1151-2916.1983.tb10571.x.Search in Google Scholar

16. Deng, J. X.; Liu, L. L.; Ding, M. W. Mater. Des. 2007, 28 (7), 2099–2105. https://doi.org/10.1016/j.matdes.2006.05.025.Search in Google Scholar

17. Deng, J. X. Mater. Sci. Eng. A 2005, 408 (1–2), 227–233. https://doi.org/10.1016/j.msea.2005.07.029.Search in Google Scholar

18. Lawn, B. R.; Marshall, D. B.; Anstis, G. R.; Dabbs, T. P. J. Mater. Sci. 1981, 16 (10), 2846–2854. https://doi.org/10.1007/bf02402849.Search in Google Scholar

19. Leonardus, J. M. G.; Dortmans, G. D. J. Am. Ceram. Soc. 1991, 74 (9), 2293–2294. https://doi.org/10.1111/j.1151-2916.1991.tb08298.x.Search in Google Scholar

20. Ritter, J. E.; Strzepa, P.; Jakus, K.; Rosenfeld, L.; Buckman, K. J. J. Am. Ceram. Soc. 1984, 67 (11), 769–774. https://doi.org/10.1111/j.1151-2916.1984.tb19515.x.Search in Google Scholar

21. Slikkerveer, P. J.; Bouten, P. C. P.; in’t Veld, F. H.; Scholten, H. Wear 1998, 217 (2), 237–250. https://doi.org/10.1016/S0043-1648(98)00187-2.Search in Google Scholar

22. Johnson, G. R.; Holmquist, T. J. J. Appl. Phys. 1999, 85 (12), 8060–8073. https://doi.org/10.1063/1.370643.Search in Google Scholar

23. Holmquist, T. J.; Johnson, G. R. J. Appl. Phys. 2005, 97 (9), 093502. https://doi.org/10.1063/1.1881798.Search in Google Scholar

Received: 2023-10-10
Accepted: 2024-02-05
Published Online: 2024-05-27
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0298/html?lang=en
Scroll to top button