Startseite Technik Intrinsic heterogeneity of grain boundary phase transitions in the Cu–Bi system: insights from grain boundary diffusion measurements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Intrinsic heterogeneity of grain boundary phase transitions in the Cu–Bi system: insights from grain boundary diffusion measurements

  • Henning Edelhoff , Vladimir A. Esin und Sergiy V. Divinski ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Diffusion of Bi and Ag in a series of polycrystalline Cu–Bi alloys is investigated using a radiotracer technique and applying the 207Bi and 110m Ag isotopes, respectively. Together with the previous measurements (Divinski S., Lohmann M., Herzig C., Straumal B., Baretzky B., Gust W. Grain-boundary Melting Phase Transition in the Cu−Bi System. Phys. Rev. B 2005, 71, 104104), a temperature–concentration interval of strong, by orders of magnitude, enhancements of Bi grain boundary diffusion rates is distinguished and the results are interpreted in terms of a grain boundary pre-wetting/wetting phase transition. Grain boundary diffusivity of Ag exhibits as well a step-wise increase with rising Bi content, mirroring the behaviour observed for the Bi tracer. However, contrary to the Bi tracer atoms for which grain boundary enhancement is observed at about 60 ppm of Bi in Cu–Bi alloys, this transition is revealed by the Ag tracer atoms at a significantly higher concentration, specifically between 90 and 100 ppm of Bi at 1080 K. The Ag diffusion rates in alloys with a moderate Bi content turn out to be not affected by the Bi-induced grain boundary phase transition and the measured grain boundary diffusion coefficients of Ag are nearly the same as those determined for pure polycrystalline Cu. This spectacular result suggests a strong heterogeneity of Bi segregation and Bi-induced phase transition for general high-angle grain boundaries in a given alloy. The behaviour is discussed in terms of the extrinsic grain boundary defects and their impact on mechano-chemical coupling which is accompanying the grain boundary phase transitions.


Corresponding author: Sergiy Divinski, Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany, E-mail:

Acknowledgment

The paper is written in the memories of two great scientists and distinguished personalities, Prof. Wolfgang Gust and Prof. Christian Herzig, who contributed a lot towards the present understanding of GB phase transitions in Cu–Bi alloys. Financial support from the German Science Foundation (DFG) via research grant DI 1419/19-1 is acknowledged.

  1. Research ethics: This work is done in full compliance with valid regulations.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Partially funded by German Research Foundation (DFG), project DI 1419/19-1.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Hampe, W. Beiträge zu der Metallurgie des Kupfers. Z. Berg-, Hütten u. Salinenwesen Deutsch. Reich 1874, 22, 93–138.Suche in Google Scholar

2. Levol. Über den Einfluß von Bismuths auf die Dehnbarkeit des Kupfers. Bergwerksfreund 1854, 17, 641–642.Suche in Google Scholar

3. Cahn, J. W. Critical Point Wetting. J. Chem. Phys. 1977, 66 (8), 3667–3672. https://doi.org/10.1063/1.434402.Suche in Google Scholar

4. Ebner, C., Saam, W. F. New Phase-Transition Phenomena in Thin Argon Films. Phys. Rev. Lett. 1977, 38, 1486–1489. https://doi.org/10.1103/physrevlett.38.1486.Suche in Google Scholar

5. Divinski, S. V., Edelhoff, H., Prokofjev, S. Diffusion and Segregation of Silver in Copper Σ5(310) Grain Boundary. Phys. Rev. B 2012, 85, 144104. https://doi.org/10.1103/physrevb.85.144104.Suche in Google Scholar

6. Frolov, T., Divinski, S. V., Asta, M., Mishin, Y. Effect of Interface Phase Transformations on Diffusion and Segregation in High-Angle Grain Boundaries. Phys. Rev. Lett. 2013, 110, 255502. https://doi.org/10.1103/physrevlett.110.255502.Suche in Google Scholar PubMed

7. Frolov, T., Asta, M., Mishin, Y. Segregation-Induced Phase Transformations in Grain Boundaries. Phys. Rev. B 2015, 92, 020103. https://doi.org/10.1103/physrevb.92.020103.Suche in Google Scholar

8. Zhou, N., Hu, C., Luo, J. Grain Boundary Segregation Transitions and Critical Phenomena in Binary Regular Solutions: A Systematics of Complexion Diagrams with Universal Characters. Acta Mater. 2021, 221, 117375. https://doi.org/10.1016/j.actamat.2021.117375.Suche in Google Scholar

9. Rabkin, E. I., Shvindlerman, L. S., Straumal, B. B. Grain Boundaries: Phase Transitions and Critical Phenomena. Int. J. Modern Phys. B 1991, 05 (19), 2989–3028. https://doi.org/10.1142/s0217979291001176.Suche in Google Scholar

10. Subramaniam, A., Koch, C. T., Cannon, R. M., Rühle, M. Intergranular Glassy Films: An Overview. Mater. Sci. Eng. A 2006, 422 (1), 3–18. https://doi.org/10.1016/j.msea.2006.01.004.Suche in Google Scholar

11. Luo, J. Stabilization of Nanoscale Quasi-Liquid Interfacial Films in Inorganic Materials: A Review and Critical Assessment. Crit. Rev. Solid State Mater. Sci. 2007, 32 (1–2), 67–109. https://doi.org/10.1080/10408430701364388.Suche in Google Scholar

12. Rohrer, G. S. Grain Boundary Energy Anisotropy: A Review. J. Mater. Sci. 2011, 46, 5881–5895. https://doi.org/10.1007/s10853-011-5677-3.Suche in Google Scholar

13. Raabe, D., Herbig, M., Sandlöbes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D., Choi, P.-P. Grain Boundary Segregation Engineering in Metallic Alloys: A Pathway to the Design of Interfaces. Curr. Opin. Solid State Mater. Sci. 2014, 18 (4), 253–261. https://doi.org/10.1016/j.cossms.2014.06.002.Suche in Google Scholar

14. Cantwell, P. R., Tang, M., Dillon, S. J., Luo, J., Rohrer, G. S., Harmer, M. P. Grain Boundary Complexions. Acta Mater. 2014, 62, 1–48. https://doi.org/10.1016/j.actamat.2013.07.037.Suche in Google Scholar

15. Korte-Kerzel, S., Hickel, T., Huber, L., Raabe, D., Sandlöbes-Haut, S., Todorova, M., Neugebauer, J. Defect Phases – Thermodynamics and Impact on Material Properties. Int. Mater. Rev. 2022, 67 (1), 89–117. https://doi.org/10.1080/09506608.2021.1930734.Suche in Google Scholar

16. Duscher, G., Chisholm, M. F., Alber, U., Rühle, M. Bismuth-Induced Embrittlement of Copper Grain Boundaries. Nat. Mater. 2004, 3, 621–626. https://doi.org/10.1038/nmat1191.Suche in Google Scholar PubMed

17. Schweinfest, R., Paxton, A. T., Finnis, M. W. Bismuth Embrittlement of Copper is an Atomic Size Effect. Nature 2004, 432, 1008–1011. https://doi.org/10.1038/nature03198.Suche in Google Scholar PubMed

18. Lozovoi, A. Y., Paxton, A. T., Finnis, M. W. Structural and Chemical Embrittlement of Grain Boundaries by Impurities: A General Theory and First-Principles Calculations for Copper. Phys. Rev. B 2006, 74, 155416. https://doi.org/10.1103/physrevb.74.155416.Suche in Google Scholar

19. Joseph, B., Barbier, F., Dagoury, G., Aucouturier, M. Rapid Penetration of Liquid Bi along Cu Grain Boundaries. Scr. Mater. 1998, 39 (6), 775–781. https://doi.org/10.1016/s1359-6462(98)00230-9.Suche in Google Scholar

20. Straumal, B. B., Gust, W. Lines of Grain Boundary Phase Transitions in Bulk Phase Diagrams. In Intergranular and Interphase Boundaries in Materials II, Volume 207 of Materials Science Forum; Trans Tech Publications Ltd: Baech, Switzerland, 1996; pp. 59–68.10.4028/www.scientific.net/MSF.207-209.59Suche in Google Scholar

21. Chang, L.-S., Rabkin, E., Straumal, B., Lejček, P., Hofmann, S., Gust, W. Temperature Dependence of the Grain Boundary Segregation of Bi in Cu Polycrystals. Scr. Mater. 1997, 37 (6), 729–735. https://doi.org/10.1016/s1359-6462(97)00171-1.Suche in Google Scholar

22. Chang, L.-S., Rabkin, E., Straumal, B. B., Baretzky, B., Gust, W. Thermodynamic Aspects of the Grain Boundary Segregation in Cu(Bi) Alloys. Acta Mater. 1999, 47 (15), 4041–4046. https://doi.org/10.1016/s1359-6454(99)00264-5.Suche in Google Scholar

23. Rabkin, E. Chemical Effects during Solute-Atom Segregation at Grain Boundaries in the Mean Field Approximation. Mater. Lett. 1995, 25 (5), 199–204. https://doi.org/10.1016/0167-577x(95)00170-0.Suche in Google Scholar

24. Hayes, F. H., Lukas, H. L., Effenberg, G., Petzow, G. A Thermodynamic Optimization of the Cu–Ag–Pd System. Z. Metallkd. 1986, 77, 749–754. https://doi.org/10.1515/ijmr-1986-771108.Suche in Google Scholar

25. Kattner, U. R., Boettinger, W. J. On the Sn–Bi–Ag Ternary Phase Diagram. J. Electron. Mater. 1994, 23, 603–610. https://doi.org/10.1007/bf02653345.Suche in Google Scholar

26. Divinski, S., Lohmann, M., Herzig, C., Straumal, B., Baretzky, B., Gust, W. Grain-boundary Melting Phase Transition in the Cu−Bi System. Phys. Rev. B 2005, 71, 104104. https://doi.org/10.1103/physrevb.71.104104.Suche in Google Scholar

27. Divinski, S., Lohmann, M., Herzig, C. Ag Grain Boundary Diffusion and Segregation in Cu: Measurements in the Types B and C Diffusion Regimes. Acta Mater. 2001, 49 (2), 249–261. https://doi.org/10.1016/s1359-6454(00)00304-9.Suche in Google Scholar

28. Harrison, L. G. Influence of Dislocations on Diffusion Kinetics in Solids with Particular Reference to the Alkali Halides. Trans. Faraday Soc. 1961, 57, 1191–1199. https://doi.org/10.1039/tf9615701191.Suche in Google Scholar

29. Paul, A., Laurila, T., Vuorinen, V., Divinski, S. V. Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer: Heidelberg, New York, 2014.10.1007/978-3-319-07461-0Suche in Google Scholar

30. Le Claire, A. D. The Analysis of Grain Boundary Diffusion Measurements. Br. J. Appl. Phys. 1963, 14 (6), 351. https://doi.org/10.1088/0508-3443/14/6/317.Suche in Google Scholar

31. Whipple, R. T. P. Concentration Contours in Grain Boundary Diffusion. Philos. Mag. 1954, 45 (371), 1225–1236. https://doi.org/10.1080/14786441208561131.Suche in Google Scholar

32. Fisher, J. C. Calculation of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. J. Appl. Phys. 1951, 22 (1), 74–77. https://doi.org/10.1063/1.1699825.Suche in Google Scholar

33. Divinski, S., Lohmann, M., Herzig, Ch. Grain Boundary Diffusion and Segregation of Bi in Cu: Radiotracer Measurements in B and C Diffusion Regimes. Acta Mater. 2004, 52 (13), 3973–3982. https://doi.org/10.1016/j.actamat.2004.05.013.Suche in Google Scholar

34. Lidiard, A. B. Cxxxiii. Impurity Diffusion in Crystals (Mainly Ionic Crystals with the Sodium Chloride Structure). London, Edinburgh Dublin Phil. Mag. J. Sci. 1955, 46 (382), 1218–1237. https://doi.org/10.1080/14786441108520633.Suche in Google Scholar

35. Le Claire, A. D. Solute Diffusion in Dilute Alloys. J. Nucl. Mater. 1978, 69–96, 70. https://doi.org/10.1016/0022-3115(78)90237-4.Suche in Google Scholar

36. Brown, M. J., Belova, I. V., Murch, G. E. Calculation of Enhancement Factors for Solute Diffusion in the Fcc Dilute Random Alloy. Philos. Mag. 2004, 84 (11), 1105–1112. https://doi.org/10.1080/14786430310001646754.Suche in Google Scholar

37. Moleko, L. K., Allnatt, A. R., Allnatt, E. L. A Self-Consistent Theory of Matter Transport in a Random Lattice Gas and Some Simulation Results. Philos. Mag. A 1989, 59 (1), 141–160. https://doi.org/10.1080/01418618908220335.Suche in Google Scholar

38. Maxwell-Garnett, J. C., Larmor, J. Xii. Colours in Metal Glasses and in Metallic Films. Philos. Trans. R. Soc. Lond. A Contain. Pap. Math. Phys. Char. 1904, 203 (359–371), 385–420.10.1098/rsta.1904.0024Suche in Google Scholar

39. Hart, E. W. On the Role of Dislocations in Bulk Diffusion. Acta Metall. 1957, 5, 597. https://doi.org/10.1016/0001-6160(57)90127-x.Suche in Google Scholar

40. Kalnin, J. R., Kotomin, E. A., Maier, J. Calculations of the Effective Diffusion Coefficient for Inhomogeneous Media. J. Phys. Chem. Solids 2002, 63, 449–456. https://doi.org/10.1016/s0022-3697(01)00159-7.Suche in Google Scholar

41. Belova, I. V., Murch, G. E. The Effective Diffusivity in Two-Phase Material. In Defects and Diffusion in Ceramics V, Volume 218 of Defect and Diffusion Forum; Trans Tech Publications Ltd: Baech, Switzerland, 2003; pp. 79–86.10.4028/www.scientific.net/DDF.218-220.79Suche in Google Scholar

42. Gas, P., Bernardini, J. Equilibrium Intergranular Segregation and Diffusion in Ag–Sn (0–6%) Alloys. Surf. Sci. 1978, 72 (2), 365–378. https://doi.org/10.1016/0039-6028(78)90301-1.Suche in Google Scholar

43. Bernardini, J., Cabane, F. Diffusion and Equilibrium Segregation in Grain Boundaries: Effects of Large Segregation. J. Phys. Colloq. 1985, 46, C4–483–C4–490. https://doi.org/10.1051/jphyscol:1985453.10.1051/jphyscol:1985453Suche in Google Scholar

44. Divinski, S. V. Grain Boundary Diffusion in Severely Deformed Metals: State of the Art and Unresolved Issues. Diffus. Found. 2015, 5, 57–73. https://doi.org/10.4028/www.scientific.net/df.5.57.Suche in Google Scholar

45. Wilde, G., Rösner, H., Divinski, S. Internal Interfaces in Severely Deformed Metals and Alloys: Coupling of Kinetics, Structure and Strain with Properties and Performance. Mater. Trans. 2023, 64, 1331–1345. https://doi.org/10.2320/matertrans.mt-mf2022009.Suche in Google Scholar

46. Guttmann, M., Dumoulin, P., Wayman, M. The Thermodynamics of Interactive Co-Segregation of Phosphorus and Alloying Elements in Iron and Temper-Brittle Steels. Metall. Mater. Trans. A 1982, 13, 1693–1711. https://doi.org/10.1007/bf02647825.Suche in Google Scholar

47. Zhao, X., Chen, H., Wilson, N., Liu, Q., Nie, J. F. Direct Observation and Impact of Co-Segregated Atoms in Magnesium Having Multiple Alloying Elements. Nat. Commun. 2019, 10, 3243. https://doi.org/10.1038/s41467-019-10921-7.Suche in Google Scholar PubMed PubMed Central

48. Bokshtein, B. S., Esin, V. A., Rodin, A. O. A New Model of Grain-Boundary Segregation with the Formation of Atomic Complexes in a Grain Boundary. Phys. Met. Metallogr. 2010, 109 (4), 316–322. https://doi.org/10.1134/s0031918x10040022.Suche in Google Scholar

49. Mishin, Y., Herzig, C., Bernardini, J., Gust, W. Grain Boundary Diffusion: Fundamentals to Recent Developments. Int. Mater. Rev. 1997, 42, 155–178. https://doi.org/10.1179/imr.1997.42.4.155.Suche in Google Scholar

50. Esin, V. A., Bokstein, B. S., Rodin, A. Concentration Profiles for Grain Boundary Diffusion in B-Regime with Regard to the Formation of Atomic Complexes in Grain Boundary. In Grain Boundary Diffusion, Stresses and Segregation, Volume 309 of Defect and Diffusion Forum; Trans Tech Publications Ltd: Baech, Switzerland, 2011; pp. 29–38.10.4028/www.scientific.net/DDF.309-310.29Suche in Google Scholar

51. Esin, V. A., Bokstein, B. S. Effect of Atomic Interaction on Grain Boundary Diffusion in the B Regime. Acta Mater. 2012, 60 (13), 5109–5116. https://doi.org/10.1016/j.actamat.2012.06.011.Suche in Google Scholar

52. Esin, V. A., Souhar, Y. Solvent Grain Boundary Diffusion in Binary Solid Solutions: A New Approach to Evaluate Solute Grain Boundary Segregation. Philos. Mag. 2014, 94 (35), 4066–4079. https://doi.org/10.1080/14786435.2014.980043.Suche in Google Scholar

53. Seah, M. P., Hondros, E. D. Grain Boundary Segregation. Proc. Roy. Soc. Lond. Math. Phys. Sci. 1973, 335, 191–212.10.1098/rspa.1973.0121Suche in Google Scholar

54. Lejcek, P., Sob, M., Paidar, V., Vitek, V. Why Calculated Energies of Grain Boundary Segregation are Unreliable when Segregant Solubility is Low. Scr. Mater. 2013, 68, 547–550. https://doi.org/10.1016/j.scriptamat.2012.11.019.Suche in Google Scholar

55. Borisov, V. T., Golikov, V. T., Shcherbedinsky, G. V. On the Relation Between the Diffusion Coefficient and the Grain-Boundary Energy. Phys. Metall. Metall. 1964, 17, 881–885.Suche in Google Scholar

56. Guiraldenq, P. Diffusion intergranulaire et énergie des joints de grains. J. Phys. Colloq. 1975, 36 (C4), C4–201–C4–211. https://doi.org/10.1051/jphyscol:1975420.10.1051/jphyscol:1975420Suche in Google Scholar

57. Gupta, D. Influence of Solute Segregation on Grain-Boundary Energy and Self-Diffusion. Metall. Trans. A 1977, 8, 1431–1438. https://doi.org/10.1007/bf02642856.Suche in Google Scholar

58. Prokoshkina, D., Esin, V. A., Wilde, G., Divinski, S. V. Grain Boundary Width, Energy and Self-Diffusion in Nickel: Effect of Material Purity. Acta Mater. 2013, 61 (14), 5188–5197. https://doi.org/10.1016/j.actamat.2013.05.010.Suche in Google Scholar

59. Belkacemi, L. T., Vaidya, M., Sevlikar, S., Hassanpour, A., Jomard, F., Irmer, D., Guerre, C., Martinelli, L., Duhamel, C., Wilde, G., Esin, V. A., Divinski, S. V. Intrinsic Heterogeneity of Grain Boundary States in Ultrafine-Grained Ni: A Cross-Scale Study by Sims and Radiotracer Analyses. Materialia 2022, 22, 101397. https://doi.org/10.1016/j.mtla.2022.101397.Suche in Google Scholar

60. Hirth, J. P., Balluffi, R. W. On Grain Boundary Dislocations and Ledges. Acta Metall. 1973(7), 21, 929–942. https://doi.org/10.1016/0001-6160(73)90150-8.Suche in Google Scholar

61. Hirth, J. P., Pond, R. C., Lothe, J. Spacing Defects and Disconnections in Grain Boundaries. Acta Mater. 2007, 55 (16), 5428–5437. https://doi.org/10.1016/j.actamat.2007.06.004.Suche in Google Scholar

62. Zhang, L., Han, J., Srolovitz, D. J., Xiang, Y. Equation of Motion for Grain Boundaries in Polycrystals. Npj Comput. Mater. 2021, 7, 64. https://doi.org/10.1038/s41524-021-00532-6.Suche in Google Scholar

63. Winter, I. S., Oppelstrup, T., Frolov, T., Rudd, R. E. Characterization and Visualization of Grain Boundary Disconnections. Acta Mater. 2022, 237, 118067. https://doi.org/10.1016/j.actamat.2022.118067.Suche in Google Scholar

64. Race, C. P., Hadian, R., von Pezold, J., Grabowski, B., Neugebauer, J. Mechanisms and Kinetics of the Migration of Grain Boundaries Containing Extended Defects. Phys. Rev. B 2015, 92, 174115. https://doi.org/10.1103/physrevb.92.174115.Suche in Google Scholar

65. Salvalaglio, M., Srolovitz, D. J., Han, J. Disconnection-Mediated Migration of Interfaces in Microstructures: II. Diffuse Interface Simulations. Acta Mater. 2022, 227, 117463. https://doi.org/10.1016/j.actamat.2021.117463.Suche in Google Scholar

66. Hu, C., Berbenni, S., Medlin, D. L., Dingreville, R. Discontinuous Segregation Patterning across Disconnections. Acta Mater. 2023, 246, 118724. https://doi.org/10.1016/j.actamat.2023.118724.Suche in Google Scholar

67. Hu, Y., Turlo, V., Beyerlein, I. J., Mahajan, S., Lavernia, E. J., Schoenung, J. M., Rupert, T. J. Disconnection-Mediated Twin Embryo Growth in Mg. Acta Mater. 2020, 194, 437–451. https://doi.org/10.1016/j.actamat.2020.04.010.Suche in Google Scholar

68. Keast, V. J., Williams, D. B. Quantitative Compositional Mapping of Bi Segregation to Grain Boundaries in Cu. Acta Mater. 1999, 47 (15), 3999–4008. https://doi.org/10.1016/s1359-6454(99)00260-8.Suche in Google Scholar

69. Fowler, R. H., Guggenheim, E. A. Statistical Thermodynamics; Cambridge University Press: Cambridge, 1939.Suche in Google Scholar

70. Lu, P., Abdeljawad, F., Rodriguez, M., Chandross, M., Adams, D. P., Boyce, B. L., Clark, B. G., Argibay, N. On the Thermal Stability and Grain Boundary Segregation in Nanocrystalline Pt–Au Alloys. Materialia 2019, 6, 100298. https://doi.org/10.1016/j.mtla.2019.100298.Suche in Google Scholar

71. White, C. L., Stein, D. F. Sulfur Segregation to Grain Boundaries in Ni3Al and Ni3(AI,Ti) Alloys. Metall. Trans. A 1978, 9, 13–22. https://doi.org/10.1007/bf02647165.Suche in Google Scholar

72. Wagih, M., Schuh, C. A. Spectrum of Grain Boundary Segregation Energies in a Polycrystal. Acta Mater. 2019, 181, 228–237. https://doi.org/10.1016/j.actamat.2019.09.034.Suche in Google Scholar

73. Garg, P., Pan, Z., Turlo, V., Rupert, T. J. Segregation Competition and Complexion Coexistence within a Polycrystalline Grain Boundary Network. Acta Mater. 2021, 218, 117213. https://doi.org/10.1016/j.actamat.2021.117213.Suche in Google Scholar

74. Frolov, T., Medlin, D. L., Asta, M. Dislocation Content of Grain Boundary Phase Junctions and its Relation to Grain Boundary Excess Properties. Phys. Rev. B 2021, 103, 184108. https://doi.org/10.1103/physrevb.103.184108.Suche in Google Scholar

75. Winter, I. S., Rudd, R. E., Oppelstrup, T., Frolov, T. Nucleation of Grain Boundary Phases. Phys. Rev. Lett. 2022, 128, 035701. https://doi.org/10.1103/physrevlett.128.035701.Suche in Google Scholar

Received: 2023-05-22
Accepted: 2023-07-07
Published Online: 2024-01-15
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0174/html
Button zum nach oben scrollen