Home Magnetic properties of NdFeB-based alloy under high-pressure torsion
Article
Licensed
Unlicensed Requires Authentication

Magnetic properties of NdFeB-based alloy under high-pressure torsion

  • Andrey Mazilkin ORCID logo EMAIL logo , Svetlana Protasova ORCID logo , Boris Straumal ORCID logo and Gregory Davdyan
Published/Copyright: January 26, 2024
Become an author with De Gruyter Brill

Abstract

When a multicomponent NdFeB-based magnetic alloy is deformed using high-pressure torsion (HPT), a quasi-stationary state is reached after 2.5 anvil revolutions, which corresponds to an equivalent strain of ∼40 at the sample mid-radius. In this state, torque self-oscillations are observed with a period of about 1.5 s and an amplitude of ∼10 % around the average value of 550 N m−1. Such self-oscillations are accompanied by strong acoustic emission. Before HPT, the alloy under study has an almost rectangular hysteresis loop with saturation magnetization J s = 135 emu g−1 and coercivity H c = 34.8 kOe. HPT deformation at initial stages transforms this alloy to the class of soft magnets: H c drops to 1.35 × 10−4 kOe, while J s practically does not change. An increase in strain leads to a gradual increase in H c to 9.61 kOe and a decrease in J s to ∼100 emu g−1 at the number of anvil revolutions n = 7. This is explained by HPT modification of the regular grain-boundary network of neodymium-rich paramagnetic phase layers. These layers provide magnetic isolation between grains of the Nd2Fe14B ferromagnetic phase. Periodic changes in torque and J s with increasing torsion angle are caused by transitions from the amorphous phase to the crystalline one and vice versa.


Corresponding author: Andrey Mazilkin, Osipyan Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia, E-mail:

Acknowledgments

The authors are grateful to Dr. A. Kilmametov (INT, Karlsruhe) for help in using the HPT setup, as well as to the facility centers at Institute of Solid State Physics Russian Academy of Sciences and at KIT, Karlsruhe. The samples for the study were provided by Vacuumschmelze GmbH.

  1. Author contributions: A.M. and S.P. collected the data and performed data analysis. G.D. provided samples and prepared figures. A.M. and B.S. interpreted results. All authors contributed to preparing the manuscript.

  2. Competing interests: The authors state no conflict of interest.

  3. Research funding: The authors acknowledge funding of the Russian Science Foundation, grant 22-23-00613, https://rscf.ru/project/22-22-00613/.

  4. Data availability: The data that support the findings of this study are available on request from the corresponding author.

References

1. Mazilkin, A. A., Protasova, S. G., Straumal, B. B., Druzhinin, A. V. Self-Sustained Oscillations of the Torque Under High-Pressure Torsion in an NdFeB Alloy. JETP Lett. 2022, 116, 698–702. https://doi.org/10.1134/S0021364022602147.Search in Google Scholar

2. Sauvage, X., Wilde, G., Divinski, S. V., Horita, Z., Valiev, R. Z. Grain Boundaries in Ultrafine Grained Materials Processed by Severe Plastic Deformation and Related Phenomena. Mater. Sci. Eng. A 2012, 540, 1–12. https://doi.org/10.1016/j.msea.2012.01.080.Search in Google Scholar

3. Edalati, K., Horita, Z. A Review on High-Pressure Torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 2016, 652, 325–352. https://doi.org/10.1016/j.msea.2015.11.074.Search in Google Scholar

4. Cao, Y., Ni, S., Liao, X., Song, M., Zhu, Y. Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation. Mater. Sci. Eng. R 2018, 133, 1–59. https://doi.org/10.1016/j.mser.2018.06.001.Search in Google Scholar

5. Ivanisenko, Y., Mazilkin, A., Gallino, I., Riegler, S. S., Doyle, S., Kilmametov, A., Fabrichnaya, O., Heilmaier, M. On the Formation of Nanocrystalline Aluminides during High Pressure Torsion of Al/Ni Alternating Foils and Post-processing Multilayer Reaction. J. Alloys Compd. 2022, 905, 164201. https://doi.org/10.1016/J.JALLCOM.2022.164201.Search in Google Scholar

6. Ivanisenko, Y., MacLaren, I., Sauvage, X., Valiev, R. Z., Fecht, H.-J. Shear-induced α → γ Transformation in Nanoscale Fe–C Composite. Acta Mater. 2006, 54, 1659–1669. https://doi.org/10.1016/J.ACTAMAT.2005.11.034.Search in Google Scholar

7. Straumal, B. B., Kilmametov, A. R., Mazilkin, I. A., Korneva, A., Zieba, P., Baretzky, B. Phase Transformations in Copper-Tin Solid Solutions at High-Pressure Torsion. JETP Lett. 2019, 110, 624–628. https://doi.org/10.1134/S0021364019210112.Search in Google Scholar

8. Krämer, L., Champion, Y., Pippan, R. From Powders to Bulk Metallic Glass Composites. Sci. Reports 2017, 7, 1–9. https://doi.org/10.1038/s41598-017-06424-4.Search in Google Scholar PubMed PubMed Central

9. Bachmaier, A., Pippan, R. Generation of Metallic Nanocomposites by Severe Plastic Deformation. Int. Mater. Rev. 2013, 58, 41–62. https://doi.org/10.1179/1743280412Y.0000000003.Search in Google Scholar

10. Kulagin, R., Beygelzimer, Y., Bachmaier, A., Pippan, R., Estrin, Y. Benefits of Pattern Formation by Severe Plastic Deformation. Appl. Mater. Today 2019, 15, 236–241. https://doi.org/10.1016/J.APMT.2019.02.007.Search in Google Scholar

11. Beygelzimer, Y., Estrin, Y., Kulagin, R. Synthesis of Hybrid Materials by Severe Plastic Deformation: A New Paradigm of SPD Processing. Adv. Eng. Mater. 2015, 17, 1853–1861. https://doi.org/10.1002/ADEM.201500083.Search in Google Scholar

12. Li, W., Guo, D., Li, X., Chen, Y., Gunderov, D. V., Stolyarov, V. V., Zhang, X. Bulk α-Fe/Nd2Fe14B Nanocomposite Magnets Produced by Severe Plastic Deformation Combined with Thermal Annealing. J. Appl. Phys. 2010, 108, 053901. https://doi.org/10.1063/1.3480789.Search in Google Scholar

13. Popov, A. G., Gunderov, D. V., Puzanova, T. Z., Raab, G. I. Microstructure and Magnetic Properties of R–Fe–B–Cu (R = Pr, Nd) Alloys Deformed by Equal-Channel Angular Pressing and Subsequent Hot Upsetting. Phys. Met. Metallogr. 2007, 103, 51–57. https://doi.org/10.1134/S0031918X07010061.Search in Google Scholar

14. Popov, A. G., Gaviko, V. S., Shchegoleva, N. N., Shreder, L. A., Gunderov, D. V., Stolyarov, V. V., Li, W., Li, L. L., Zhang, X. Y. Effect of High-Pressure Torsion Deformation and Subsequent Annealing on Structure and Magnetic Properties of Overquenched Melt-Spun Nd9Fe85B6 Alloy. J. Iron Steel Res. Int. 2006, 13, 160–165. https://doi.org/10.1016/S1006-706X(08)60175-2.Search in Google Scholar

15. Stolyarov, V. V., Gunderov, D. V., Popov, A. G., Puzanova, T. Z., Raab, G. I., Yavari, A. R., Valiev, R. Z. High Coercive States in Pr–Fe–B–Cu Alloy Processed by Equal Channel Angular Pressing. J. Magn. Magn. Mater. 2002, 242–245, 1399–1401. https://doi.org/10.1016/S0304-8853(01)01244-6.Search in Google Scholar

16. Tereshina, I. S., Kudrevatykh, N. V., Ivanov, L. A., Politova, G. A., Tereshina, E. A., Gorbunov, D., Doerr, M., Rogacki, K. Magnetic Properties of the Nanocrystalline Nd–Ho–Fe–Co–B Alloy at Low Temperatures: The Influence of Time and Annealing. J. Mater. Eng. Perform. 2017, 6, 4676–4680. https://doi.org/10.1007/S11665-017-2952-8/FIGURES/5.Search in Google Scholar

17. Straumal, B. B., Kilmametov, A. R., Mazilkin, A. A., Protasova, S. G., Kolesnikova, K. I., Straumal, P. B., Baretzky, B. Amorphization of Nd–Fe–B Alloy Under the Action of High-Pressure Torsion. Mater. Lett. 2015, 145, 63–66. https://doi.org/10.1016/j.matlet.2015.01.041.Search in Google Scholar

18. Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Gunderov, D. V., López, G. A., Baretzky, B. Amorphization of Crystalline Phases in the Nd–Fe–B Alloy Driven by the High-Pressure Torsion. Mater. Lett. 2015, 161, 735–739. https://doi.org/10.1016/j.matlet.2015.09.076.Search in Google Scholar

19. Straumal, B. B., Kilmametov, A. R., Ivanisenko, Y., Mazilkin, A. A., Kogtenkova, O. A., Kurmanaeva, L., Korneva, A., Zięba, P., Baretzky, B. Phase Transitions Induced by Severe Plastic Deformation: Steady-State and Equifinality. Int. J. Mater. Res. 2015, 106, 657–664. https://doi.org/10.3139/146.111215.Search in Google Scholar

20. Sundeev, R. V., Shalimova, A. V., Sitnikov, N. N., Chernogorova, O. P., Glezer, A. M., Presnyakov, M. Yu., Karateev, I. A., Pechina, E. A., Shelyakov, A. V. Effect of High-Pressure Torsion on the Structure and Properties of the Natural Layered Amorphous-Crystalline Ti2NiCu Composite. J. Alloys Compd. 2020, 845, 156273. https://doi.org/10.1016/j.jallcom.2020.156273.Search in Google Scholar

21. Beygelzimer, Y., Estrin, Y., Mazilkin, A., Scherer, T., Baretzky, B., Hahn, H., Kulagin, R. Quantifying Solid-State Mechanical Mixing by High-Pressure Torsion. J. Alloys Compd. 2021, 878, 160419. https://doi.org/10.1016/j.jallcom.2021.160419.Search in Google Scholar

22. Beygelzimer, Y., Estrin, Y., Filippov, A., Mazilkin, A., Mail, M., Baretzky, B., Kulagin, R. Simulation of Layered Structure Instability under High-Pressure Torsion. Mater. Lett. 2022, 324, 132689. https://doi.org/10.1016/j.matlet.2022.132689.Search in Google Scholar

23. Subramaniam, A., Koch, C. T., Cannon, R. M., Rühle, M. Intergranular Glassy Films: An Overview. Mater. Sci. Eng. A 2006, 422, 3–18. https://doi.org/10.1016/j.msea.2006.01.004.Search in Google Scholar

24. Rafaï, S., Bonn, D., Bertrand, E., Meunier, J., Weiss, V. C., Indekeu, J. O. Long-Range Critical Wetting: Observation of a Critical End Point. Phys. Rev. Lett. 2004, 92, 245701–245704. https://doi.org/10.1103/PhysRevLett.92.245701.Search in Google Scholar PubMed

25. Mazilkin, A., Straumal, B. B., Protasova, S. G., Gorji, S., Straumal, A. B., Katter, M., Schütz, G., Barezky, B. Grain Boundary Oxide Layers in NdFeB-Based Permanent Magnets. Mater. Des. 2021, 199, 109417. https://doi.org/10.1016/j.matdes.2020.109417.Search in Google Scholar

Received: 2023-06-28
Accepted: 2023-12-04
Published Online: 2024-01-26
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0210/html
Scroll to top button