Abstract
The field of biomaterials continually seeks novel materials to meet the requirements of bone tissue engineering. This manuscript explores polyvinyl alcohol (PVA)–combeite composites. The composites were characterized using X-ray diffraction and scanning electron microscopy. Notably, the X-ray diffraction patterns unveil a combination of amorphous and crystalline regions attributed to PVA and combeite, respectively. More importantly, PVA–combeite composites exhibit reduced swelling and degradation rates compared to pure PVA. The percentage swelling and degradation values (%) for the prepared materials fall within the range of 190–340 and 55–75, respectively. The spherical apatite structures formed post the immersion in Hanks’ Balanced Salt Solution indicate that these materials could be used in the field of bone tissue engineering.
Acknowledgments
The authors are grateful to the Founder Chancellor for providing the necessary facilities and inspiration to carry out this work.
-
Research ethics: Not applicable.
-
Author contributions: All co-authors have seen and agree with the contents of the manuscript. All authors have given explicit consent to submit and obtained consent from the responsible authorities at the institute/organisation where the work has been carried out.
-
Competing interests: The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organisation or entity with any non-financial interest in the subject matter or materials discussed in this manuscript.
-
Research funding: This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors. The authors have no relevant financial interests to disclose.
-
Data availability: All data generated or analysed during this study are included in this published article and not present in any repository.
References
1. Feng, X. Chemical and biochemical basis of cell-bone matrix interaction in health and disease. Curr. Chem. Biol. 2009, 3, 189–196. https://doi.org/10.2174/187231309788166398.Suche in Google Scholar PubMed PubMed Central
2. Boskey, A. L. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Rep. 2015, 2. https://doi.org/10.1038/bonekey.2013.181.Suche in Google Scholar PubMed PubMed Central
3. Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y. Y., Kaufman, M. J., Douglas, E. P., Gower, L. B. Bone structure and formation: a new perspective. Mater. Sci. Eng. R Rep. 2007, 58, 77–116. https://doi.org/10.1016/j.mser.2007.05.001.Suche in Google Scholar
4. Rosa, N., Moura, M. F., Olhero, S., Simoes, R., Magalhães, F. D., Marques, A. T., Ferreira, J. P., Reis, A. R., Carvalho, M., Parente, M. Bone: an outstanding composite material. Appl. Sci. 2022, 12, 3381. https://doi.org/10.3390/app12073381.Suche in Google Scholar
5. Filip, N., Radu, I., Veliceasa, B., Filip, C., Pertea, M., Clim, A., Pinzariu, A. C., Drochioi, I. C., Hilitanu, R. L., Serban, I. L. Biomaterials in orthopedic devices: current issues and future perspectives. Coatings 2022, 12, 1544. https://doi.org/10.3390/coatings12101544.Suche in Google Scholar
6. Lei, B., Shin, K. H., Noh, D. Y., Jo, I. H., Koh, Y. H., Kim, H. E., Kim, S. E. Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly (ε-caprolactone) composites for bone tissue engineering. Mater. Sci. Eng. C 2013, 33, 1102–1108. https://doi.org/10.1016/j.msec.2012.11.039.Suche in Google Scholar PubMed
7. Felfel, R. M., Ahmed, I., Parsons, A. J., Haque, P., Walker, G. S., Rudd, C. D. Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J. Biomater. Appl. 2012, 26, 765–789. https://doi.org/10.1177/0885328210384532.Suche in Google Scholar PubMed
8. Tayebi, M., Parham, S., Ahangar, H. A., Zargar Kharazi, A. Preparation and evaluation of bioactive bilayer composite membrane PHB/β-TCP with ciprofloxacin and vitamin D3 delivery for regenerative damaged tissue in periodontal disease. J. Appl. Polym. Sci. 2022, 139, 51507. https://doi.org/10.1002/app.51507.Suche in Google Scholar
9. Manzoor, F., Golbang, A., Jindal, S., Dixon, D., McIlhagger, A., Harkin-Jones, E., Crawford, D., Mancuso, E. 3D printed PEEK/HA composites for bone tissue engineering applications: effect of material formulation on mechanical performance and bioactive potential. J. Mech. Behav. Biomed. Mater. 2021, 121, 104601. https://doi.org/10.1016/j.jmbbm.2021.104601.Suche in Google Scholar PubMed
10. Kumar, P. A., Irudhayam, J. S., Naviin, D. A review on importance and recent applications of polymer composites in orthopaedics. Int. J. Eng. Res. Develop. 2012, 5, 40–43. http://www.ijerd.com/paper/vol5-issue2/G05024043.pdf.Suche in Google Scholar
11. Nelson, C., Magge, A., Bernard, T. S., Khan, Y., Laurencin, C. T. Nanostructured composites for bone repair. J. Biomim. Biomater. Tissue Eng. 2013, 3, 426–439. https://doi.org/10.1166/jbt.2013.1098.Suche in Google Scholar
12. Chen, Q., Zhu, C., Thouas, G. A. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Prog. Biomater. 2012, 1, 1–22. https://doi.org/10.1186/2194-0517-1-2.Suche in Google Scholar PubMed PubMed Central
13. Jin, S. G. Production and application of biomaterials based on polyvinyl alcohol (PVA) as wound dressing. Chem. Asian J. 2022, 17, 202200595. https://doi.org/10.1002/asia.202200595.Suche in Google Scholar PubMed
14. Kumar, A., Han, S. S. PVA-based hydrogels for tissue engineering: a review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. https://doi.org/10.1080/00914037.2016.1190930.Suche in Google Scholar
15. Gupta, S., Webster, T. J., Sinha, A. Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J. Mater. Sci. Mater. Med. 2011, 22, 1763–1772. https://doi.org/10.1007/s10856-011-4343-2.Suche in Google Scholar PubMed
16. Kim, T. H., An, D. B., Oh, S. H., Kang, M. K., Song, H. H., Lee, J. H. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials 2015, 40, 51–60. https://doi.org/10.1016/j.biomaterials.2014.11.017.Suche in Google Scholar PubMed
17. Shuai, C., Mao, Z., Lu, H., Nie, Y., Hu, H., Peng, S. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication 2013, 5, 015014. https://doi.org/10.1088/1758-5082/5/1/015014.Suche in Google Scholar PubMed
18. Valarmathi, N., Sabareeswari, K., Sumathi, S. Copper–strontium hydroxyapatite/chitosan/polyvinyl alcohol/gelatin electrospun composite and its biological studies for orthopedic applications. Polym. Bull. 2024, 81, 1193–1210. https://doi.org/10.1007/s00289-023-04761-1.Suche in Google Scholar
19. Ma, W., Zhang, S., Xie, C., Wan, X., Li, X., Chen, K., Zhao, G. Preparation of high mechanical strength chitosan nanofiber/NanoSiO2/PVA composite scaffolds for bone tissue engineering using sol–gel method. Polymers 2022, 14, 2083. https://doi.org/10.3390/polym14102083.Suche in Google Scholar PubMed PubMed Central
20. Tut, T. A., Cesur, S., Ilhan, E., Sahin, A., Yildirim, O. S., Gunduz, O. Gentamicin-loaded polyvinyl alcohol/whey protein isolate/hydroxyapatite 3D composite scaffolds with drug delivery capability for bone tissue engineering applications. Eur. Polym. J. 2022, 179, 111580. https://doi.org/10.1016/j.eurpolymj.2022.111580.Suche in Google Scholar
21. Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C. Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA 20151-1110, USA, 2003. http://www.handbookofmineralogy.org/.Suche in Google Scholar
22. Barry, D. J., Smith, J. V., Steele, I. M. Combeite (Na2.33Ca1. 74others0.12)Si3O9 from Oldoinyo Lengai, Tanzania. J. Geol. 1989, 97, 365–372. https://doi.org/10.1086/629310.Suche in Google Scholar
23. Keller, J., Klaudius, J., Kervyn, M., Ernst, G. G., Mattsson, H. B. Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania: I. New magma composition during the 2007–2008 explosive eruptions. Bull. Volcanol. 2010, 72, 893–912. https://doi.org/10.1007/s00445-010-0360-0.Suche in Google Scholar
24. Andersen, T., Elburg, M., Erambert, M. Petrology of combeite-and götzenite-bearing nephelinite at nyiragongo, virunga volcanic province in the East African rift. Lithos 2012, 152, 105–121. https://doi.org/10.1016/j.lithos.2012.04.018.Suche in Google Scholar
25. Chen, Q., Boccaccini, A. R. Coupling mechanical competence and bioresorbability in Bioglass®-derived tissue engineering scaffolds. Adv. Eng. Mater. 2006, 8, 285–289. https://doi.org/10.1002/adem.200500259.Suche in Google Scholar
26. Karimi, A. Z., Rezabeigi, E., Drew, R. A. Crystallization behavior of combeite in 45S5 Bioglass® via controlled heat treatment. J. Non-Cryst. Solids 2018, 502, 176–183. https://doi.org/10.1016/j.jnoncrysol.2018.09.003.Suche in Google Scholar
27. Baino, F., Fiume, E. Elastic mechanical properties of 45S5-based bioactive glass–ceramic scaffolds. Materials 2019, 12, 3244. https://doi.org/10.3390/ma12193244.Suche in Google Scholar
28. Fakhruddin, A. K., Mohamad, H. Effect of sintering temperature on mechanical and bioactivity properties of bioactive glass and cordierite composite. Cerâmica 2022, 68, 13–23. https://doi.org/10.1590/0366-69132022683853141.Suche in Google Scholar
29. Filho, O. P., La Torre, G. P., Hench, L. L. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J. Biomed. Mater. Res. 1996, 30, 509–514. https://doi.org/10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T.10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-TSuche in Google Scholar
30. Bîrcă, A. C., Gherasim, O., Ficai, A., Grumezescu, A. M., Oprea, O. C., Vasile, B. Ş., Balta, C., Andronescu, E., Hermenean, A. O. Electrospun fibrous silica for bone tissue engineering applications. Pharmaceutics 2023, 15, 1728. https://doi.org/10.3390/pharmaceutics15061728.Suche in Google Scholar
31. Chen, F. W., Teng, S. H., Xia, S. H., Wang, P., Pan, G. Q. One-pot synthesis of polyvinyl alcohol/silica composite microspheres in a surfactant-free system for biomedical applications. J. Sol-Gel Sci. Technol. 2016, 79, 525–529. https://doi.org/10.1007/s10971-016-4118-9.Suche in Google Scholar
32. Shankhwar, N., Kumar, M., Mandal, B. B., Srinivasan, A. Novel polyvinyl alcohol-bioglass 45S5 based composite nanofibrous membranes as bone scaffolds. Mater. Sci. Eng. C 2016, 69, 1167–1174. https://doi.org/10.1016/j.msec.2016.08.018.Suche in Google Scholar
33. West, A. R. Solid State Chemistry and Its Applications; UK: John Wiley & Sons, 2022.Suche in Google Scholar
34. Atak, B. H., Buyuk, B., Huysal, M., Isik, S., Senel, M., Metzger, W., Cetin, G. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr. Polym. 2017, 164, 200–213. https://doi.org/10.1016/j.carbpol.2017.01.100.Suche in Google Scholar PubMed
35. Yin, H., Udomsom, S., Kantawong, F. Fabrication of blended gelatin–polyvinyl alcohol–chitosan scaffold for wound regeneration. CMU J. Nat. Sci. 2020, 19, 920. https://doi.org/10.12982/CMUJNS.2020.0085.Suche in Google Scholar
36. Kim, D. H., Kim, T. W., Lee, J. D., Shin, K. K., Jung, J. S., Hwang, K. H., Lee, J. K., Park, H. C., Yoon, S. Y. Preparation and in vitro and in vivo performance of magnesium ion substituted biphasic calcium phosphate spherical microscaffolds as human adipose tissue-derived mesenchymal stem cell microcarriers. J. Nanomater. 2013. https://doi.org/10.1155/2013/762381.Suche in Google Scholar
37. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G. The HighScore suite. Powder Diffr. 2014, 9, S13–S18. https://doi.org/10.1017/S0885715614000840.Suche in Google Scholar
38. de Laia, A. G., Barrioni, B. R., Valverde, T. M., de Goes, A. M., de Sá, M. A., Pereira, M. D. Therapeutic cobalt ion incorporated in poly (vinyl alcohol)/bioactive glass scaffolds for tissue engineering. J. Mater. Sci. 2020, 55, 8710–8727. https://doi.org/10.1007/s10853-020-04644-0.Suche in Google Scholar
39. Lin, W. C., Tang, C. M. Evaluation of polyvinyl alcohol/cobalt substituted hydroxyapatite nanocomposite as a potential wound dressing for diabetic foot ulcers. Int. J. Mol. Sci. 2020, 21, 8831. https://doi.org/10.3390/ijms21228831.Suche in Google Scholar PubMed PubMed Central
40. Hu, X. L., Sun, C., Peng, B., Chen, S., Xiong, L., Cao, H., Sun, Z., Qian, W., Cheng, X., Yu, Z. Swelling property of PVA hydrogels with different concentration and specifications and its influencing factors. Int. J. Clin. Exp. Med. 2016, 2, 708–716. https://e-century.us/files/ijcem/9/2/ijcem0010778.pdf.Suche in Google Scholar
41. Zhu, C., Huang, C., Zhang, W., Ding, X., Yang, Y. Biodegradable-glass-fiber reinforced hydrogel composite with enhanced mechanical performance and cell proliferation for potential cartilage repair. Int. J. Mol. Sci. 2022, 23, 8717. https://doi.org/10.3390/ijms23158717.Suche in Google Scholar PubMed PubMed Central
42. Huang, C. L., Huang, H. Y., Lu, Y. C., Cheng, C. J., Lee, T. M. Development of a flexible film made of polyvinyl alcohol with chitosan based thermosensitive hydrogel. J. Dent. Sci. 2023, 18, 822–832. https://doi.org/10.1016/j.jds.2023.01.007.Suche in Google Scholar PubMed PubMed Central
43. Zhang, Y., Ye, L. Structure and property of polyvinyl alcohol/precipitated silica composite hydrogels for microorganism immobilization. Compos. B 2014, 56, 749–755. https://doi.org/10.1016/j.compositesb.2013.09.015.Suche in Google Scholar
44. Kaur, T., Thirugnanam, A., Pramanik, K. Tailoring the in vitro characteristics of poly (vinyl alcohol)-nanohydroxyapatite composite scaffolds for bone tissue engineering. J. Polym. Eng. 2016, 36, 771–784. https://doi.org/10.1515/polyeng-2015-0252.Suche in Google Scholar
45. Liu, J., Yang, L., Liu, K., Gao, F. Hydrogel scaffolds in bone regeneration: their promising roles in angiogenesis. Front. Pharmacol 2023, 14, 1050954. https://doi.org/10.3389/fphar.2023.1050954.Suche in Google Scholar PubMed PubMed Central
46. Martins, T., Moreira, C. D., Costa-Júnior, E. S., Pereira, M. M. In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker. Biomed. Glasses 2018, 4, 45–56. https://doi.org/10.1515/bglass-2018-0005.Suche in Google Scholar
47. Kobayashi, H., Kato, M., Taguchi, T., Ikoma, T., Miyashita, H., Shimmura, S., Tsubota, K., Tanaka, J. Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. Mater. Sci. Eng. C 2004, 24, 729–735. https://doi.org/10.1016/j.msec.2004.08.038.Suche in Google Scholar
48. Abdal-hay, A., Kim, C. I., Lim, J. K. An in situ hydrothermal fabrication process of poly (vinyl alcohol)/apatite-like nanocomposites with improved thermal and mechanical properties. Ceram. Int. 2014, 40, 4995–5000. https://doi.org/10.1016/j.ceramint.2013.08.057.Suche in Google Scholar
49. Chen, Q. Z., Thompson, I. D., Boccaccini, A. R. 45S5 bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 2006, 27, 2414–2425. https://doi.org/10.1016/j.biomaterials.2005.11.025.Suche in Google Scholar PubMed
50. Ozawa, T., Hayakawa, T., Hirota, M., Okamoto, Y., Ohta, S., Mastui, Y., Tohnai, I. Apatite deposition on several dental biodegradable materials in simulated body fluid. J. Oral Tissue Eng. 2007, 5, 48–53. https://doi.org/10.11223/jarde.5.48.Suche in Google Scholar
51. Baino, F., Yamaguchi, S. The use of simulated body fluid (SBF) for assessing materials bioactivity in the context of tissue engineering: review and challenges. Biomimetics 2020, 5, 57. https://doi.org/10.3390/biomimetics5040057.Suche in Google Scholar PubMed PubMed Central
52. Fujibayashi, S., Neo, M., Kim, H. M., Kokubo, T., Nakamura, T. A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials 2003, 24, 1349–1356. https://doi.org/10.1016/S0142-9612(02)00511-2.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Fabrication of magnetically separable Ag–ZnFe2O4 hollow nanospheres with efficient photocatalytic activity
- Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent
- Effect of synthesis method on structural and magnetic properties of La0.7Ca0.2Ba0.1MnO3
- Exploring the functional abilities of PVA–combeite composites as potential candidates for bone substitutes
- Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
- Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
- Microstructure and residual stress distribution of electron beam-welded joints of a 50 mm-thick TA15 titanium alloy plate
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Fabrication of magnetically separable Ag–ZnFe2O4 hollow nanospheres with efficient photocatalytic activity
- Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent
- Effect of synthesis method on structural and magnetic properties of La0.7Ca0.2Ba0.1MnO3
- Exploring the functional abilities of PVA–combeite composites as potential candidates for bone substitutes
- Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
- Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
- Microstructure and residual stress distribution of electron beam-welded joints of a 50 mm-thick TA15 titanium alloy plate
- News
- DGM – Deutsche Gesellschaft für Materialkunde