Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
Abstract
In this study, a nanocomposite film comprising poly(vinyl alcohol) (PVA) and rice husk-derived cellulose nanocrystals (CNC) was introduced as a novel sorbent for removing copper (II) cations. First, CNC was isolated from neat rice husk, and then these particles with many ratios compared to PVA (2, 4, 6, and 10 wt.%) were added to the PVA solution to render the nanocomposite films. The obtained films were evaluated using scanning electron microscopy, Fourier-transform infrared spectroscopy, and water uptake tests. The optimal condition for the sorbent preparation was 10 wt.% of CNCs to PVA. The maximum ion adsorption percentage of the PVA/CNC 10 % film reached 55 % after 3 h exposure to 70 ppm Cu (II) ion solution at 25 °C. This research suggested a facile and feasible fabrication method of a nanocomposite film, considered a potential sorbent for the adsorption of copper (II) ions.
Acknowledgments
We are thankful to Ho Chi Minh City University of Technology and Education, Vietnam.
-
Research ethics: Not applicable.
-
Author contributions: Vu Viet Linh Nguyen: methodology, investigation, supervision, writing and discussion; Thanh-Truc Pham: formal analysis; Nguyen Anh Tuan Huynh: formal analysis. Van Quy Nguyen: writing and discussion.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This research is funded by Ho Chi Minh City University of Technology and Education (HCMUTE), under grant number T2022-24.
-
Data availability: Not applicable.
References
1. Saleh, T. A., Mustaqeem, M., Khaled, M. Environ. Nanotechnol., Monit. Manage. 2022, 17, 100617. https://doi.org/10.1016/J.ENMM.2021.100617.Search in Google Scholar
2. Fu, F., Wang, Q. J. Environ. Manage. 2011, 92, 407. https://doi.org/10.1016/j.jenvman.2010.11.011.Search in Google Scholar PubMed
3. Hegazi, H. A. HBRC J. 2013, 9, 276. https://doi.org/10.1016/J.HBRCJ.2013.08.004.Search in Google Scholar
4. Lee, C. S., Robinson, J., Chong, M. F. Process Saf. Environ. Prot. 2014, 92, 489. https://doi.org/10.1016/j.psep.2014.04.010.Search in Google Scholar
5. Inglezakis, S. P. V. Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications; Elsevier Science: Amsterdam, Netherlands, 2006.10.1016/B978-044452783-7/50002-1Search in Google Scholar
6. Shu, Z., Li, T., Zhou, J., Chen, Y., Yu, D., Wang, Y. Appl. Clay Sci. 2014, 102, 33. https://doi.org/10.1016/J.CLAY.2014.10.006.Search in Google Scholar
7. Bhadra, B. N., Seo, P. W., Jhung, S. H. Chem. Eng. J. 2016, 301, 27. https://doi.org/10.1016/j.cej.2016.04.143.Search in Google Scholar
8. Ejara, T. M., Balakrishnan, S., Kim, J. C. SPE Polym. 2021, 2, 288–296. https://doi.org/10.1002/pls2.10057.Search in Google Scholar
9. Hafemann, E., Battisti, R., Bresolin, D., Marangoni, C., Machado, R. A. F. Waste Biomass Valorization 2020, 11, 6595. https://doi.org/10.1007/s12649-020-00937-2.Search in Google Scholar
10. Hasanpour, M., Hatami, M. Adv. Colloid Interface Sci. 2020, 284, 102247. https://doi.org/10.1016/J.CIS.2020.102247.Search in Google Scholar
11. Tran, H. T., Vu, N. D., Matsukawa, M., Okajima, M., Kaneko, T., Ohki, K., Yoshikawa, S. J. Environ. Chem. Eng. 2016, 4, 2529. https://doi.org/10.1016/j.jece.2016.04.038.Search in Google Scholar
12. Hakimi, M. I., Najmuddin, S. U. F. S., Yusuff, S. M., Norrrahim, M. N. F., Janudin, N., Yusoff, M. Z. M., Ilyas, R. A. Ind. Appl. Nanocellulose its Nanocomposites; Woodhead Publishing: Cambridge, UK, 2022; pp. 409–437.10.1016/B978-0-323-89909-3.00016-XSearch in Google Scholar
13. Li, Y., Guo, C., Shi, R., Zhang, H., Gong, L., Dai, L. Carbohydr. Polym. 2019, 223, 115048. https://doi.org/10.1016/J.CARBPOL.2019.115048.Search in Google Scholar
14. Mohammed, N., Grishkewich, N., Tam, K. C. Environ. Sci.: Nano 2018, 5, 623. https://doi.org/10.1039/C7EN01029J.Search in Google Scholar
15. Carpenter, A. W., de Lannoy, C.-F., Wiesner, M. R. Environ. Sci. Technol. 2015, 49, 5277. https://doi.org/10.1021/es506351r.Search in Google Scholar PubMed PubMed Central
16. Mautner, A. Polym. Int. 2020, 69, 741. https://doi.org/10.1002/pi.5993.Search in Google Scholar
17. Jiang, F., Hsieh, Y.-L. J. Mater. Chem. A 2014, 2, 6337. https://doi.org/10.1039/C4TA00743C.Search in Google Scholar
18. Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., Fang, J., Fang, Z. Bioresour. Technol. 2020, 298, 122468. https://doi.org/10.1016/j.biortech.2019.122468.Search in Google Scholar PubMed
19. Zubair, M., Arshad, M., Ullah, A. Nat. Polym. Green Adsorbents Water Treat.; Elsevier: Amsterdam, Netherlands, 2021; pp. 93–109.10.1016/B978-0-12-820541-9.00009-0Search in Google Scholar
20. Aoudi, B., Boluk, Y., Gamal El-Din, M. Sci. Total Environ. 2022, 843, 156903. https://doi.org/10.1016/J.SCITOTENV.2022.156903.Search in Google Scholar
21. George, J., Sabapathi, S. N. Nanotechnol., Sci. Appl. 2015, 8, 45. https://doi.org/10.2147/NSA.S64386.Search in Google Scholar PubMed PubMed Central
22. Börjesson, M., Westman, G. Cellul. – Fundam. Asp. Curr. Trends; InTechOpen: London, UK, 2015.Search in Google Scholar
23. Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., Hussin, M. H. Front. Chem. 2020, 8, 392. https://doi.org/10.3389/fchem.2020.00392.Search in Google Scholar PubMed PubMed Central
24. Tshikovhi, A., Mishra, S. B., Mishra, A. K. Int. J. Biol. Macromol. 2020, 152, 616. https://doi.org/10.1016/j.ijbiomac.2020.02.221.Search in Google Scholar PubMed
25. Abu-Saied, M. A., Wycisk, R., Abbassy, M. M., El-Naim, G. A., El-Demerdash, F., Youssef, M. E., Bassuony, H., Pintauro, P. N. Carbohydr. Polym. 2017, 165, 149. https://doi.org/10.1016/j.carbpol.2016.12.039.Search in Google Scholar PubMed
26. Zheng, Q., Cai, Z., Gong, S. J. Mater. Chem. A 2014, 2, 3110. https://doi.org/10.1039/C3TA14642A.Search in Google Scholar
27. Hasanpour, M., Hatami, M. Adv. Colloid Interface Sci. 2020, 284, 102247. https://doi.org/10.1016/j.cis.2020.102247.Search in Google Scholar PubMed
28. Kljun, A., Benians, T. A. S., Goubet, F., Meulewaeter, F., Knox, J. P., Blackburn, R. S. Biomacromolecules 2011, 12, 4121. https://doi.org/10.1021/bm201176m.Search in Google Scholar PubMed
29. Nam, S., French, A. D., Condon, B. D., Concha, M. Carbohydr. Polym. 2016, 135, 1. https://doi.org/10.1016/J.CARBPOL.2015.08.035.Search in Google Scholar PubMed
30. Rashid, S., Dutta, H. Ind. Crops Prod. 2020, 154, 112627. https://doi.org/10.1016/j.indcrop.2020.112627.Search in Google Scholar
31. Johar, N., Ahmad, I., Dufresne, A. Ind. Crops Prod. 2012, 37, 93. https://doi.org/10.1016/j.indcrop.2011.12.016.Search in Google Scholar
32. Das, A. M., Ali, A. A., Hazarika, M. P. Carbohydr. Polym. 2014, 112, 342. https://doi.org/10.1016/j.carbpol.2014.06.006.Search in Google Scholar PubMed
33. de Morais Teixeira, E., Corrêa, A. C., Manzoli, A., de Lima Leite, F., de Oliveira, C. R., Mattoso, L. H. C. Cellulose 2010, 17, 595. https://doi.org/10.1007/s10570-010-9403-0.Search in Google Scholar
34. Ben Shalom, T., Nevo, Y., Leibler, D., Shtein, Z., Azerraf, C., Lapidot, S., Shoseyov, O. Macromol. Biosci. 2019, 19, 1800347. https://doi.org/10.1002/mabi.201800347.Search in Google Scholar PubMed
35. Mandal, A., Chakrabarty, D. J. Ind. Eng. Chem. 2014, 20, 462. https://doi.org/10.1016/j.jiec.2013.05.003.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde