Home Accessing forbidden phases
Article
Licensed
Unlicensed Requires Authentication

Accessing forbidden phases

  • Yue Xing ORCID logo , Zheng Li EMAIL logo , Huai Yu Hou , Ying Liu and Jing Tao Wang EMAIL logo
Published/Copyright: December 13, 2023
Become an author with De Gruyter Brill

Abstract

Thanks to the development of quantum mechanics-based crystal structure prediction methods in the past decade, numerous new compounds with low temperature thermodynamic stability, mainly binary intermetallic compounds, have been predicted. Differing from conventional alloy materials, the synthesis of these low temperature stable compounds may be impossible relying on traditional thermal activation methods since thermally activated atomic diffusion at low temperatures is so slow that phase formation may require cosmic-scale time. Strikingly, it has been shown that some special experimental methods can successfully synthesize low temperature stable compounds by introducing a large number of vacancies and defects into the material to enable atomic rearrangement and simultaneously increasing the phase transformation driving force to accelerate the reaction kinetics. This review summarizes the predictions of compounds that have not been experimentally reported to be stable at low temperatures and provides some experimental approaches that can be used for future synthesis. We describe the basic thermodynamics and kinetics of phase formation, show how compound formation is constrained at low temperatures, and illustrate that the formation of some compounds is nearly impossible without enhanced kinetics.


Corresponding authors: Zheng Li and Jing Tao Wang, School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing, P.R. China, E-mail: (Z. Li), (J. T. Wang)

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Yue XING: Writing – original draft, Writing – review & editing. Zheng LI: Writing – review & editing. Huai Yu HOU: Investigation. Ying LIU: Investigation. Jing Tao WANG: Conceptualization, Methodology, Writing – review & editing, Funding acquisition.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (Grant No. 52074160).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Laughlin, D. E., Massalski, T. B. Prog. Mater. Sci. 2021, 120, 100715. https://doi.org/10.1016/j.pmatsci.2020.100715.Search in Google Scholar

2. Pentin, I. V., Schön, J. C., Jansen, M. Phys. Rev. B 2010, 82, 144102. https://doi.org/10.1103/PhysRevB.82.144102.Search in Google Scholar

3. Yang, C. W., Williams, D. B., Goldstein, J. I. J. Phase Equilib. Diffus. 1996, 17, 522–531. https://doi.org/10.1007/BF02665999.Search in Google Scholar

4. Murray, J. L. Al-V (aluminum-vanadium). J. Phase Equilib., 1989, 10, 351–357. https://doi.org/10.1007/BF02877591.Search in Google Scholar

5. Desiraju, G. R. Nat. Mater. 2002, 1, 77–79. https://doi.org/10.1038/nmat726.Search in Google Scholar PubMed

6. Curtarolo, S., Setyawan, W., Hart, G. L. W., Jahnatek, M., Chepulskii, R. V., Taylor, R. H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M. J., Stokes, H. T., Demchenko, D. O., Morgan, D. Comput. Mater. Sci. 2012, 58, 218–226. https://doi.org/10.1016/j.commatsci.2012.02.005.Search in Google Scholar

7. Oganov, A. R., Pickard, C. J., Zhu, Q., Needs, R. J. Nat. Rev. Mater. 2019, 4, 331–348. https://doi.org/10.1038/s41578-019-0101-8.Search in Google Scholar

8. Levy, O., Hart, G. L. W., Curtarolo, S. Acta Mater. 2010, 58, 2887–2897. https://doi.org/10.1016/j.actamat.2010.01.017.Search in Google Scholar

9. Jahnátek, M., Levy, O., Hart, G. L. W., Nelson, L. J., Chepulskii, R. V., Xue, J., Curtarolo, S. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 214110. https://doi.org/10.1103/PhysRevB.84.214110.Search in Google Scholar

10. Levy, O., Jahnátek, M., Chepulskii, R. V., Hart, G. L. W., Curtarolo, S. J. Am. Chem. Soc. 2011, 133, 158–163. https://doi.org/10.1021/ja1091672.Search in Google Scholar PubMed

11. Curtarolo, S., Morgan, D., Ceder, G. Calphad Comput. Coupling Phase Diagrams Thermochem. 2005, 29, 163–211. https://doi.org/10.1016/j.calphad.2005.01.002.Search in Google Scholar

12. Chamberod, A., Laugier, J., Penisson, J. M. J. Magn. Magn. Mater. 1979, 10, 139–144. https://doi.org/10.1016/0304-8853(79)90165-3.Search in Google Scholar

13. Hartsough, L. D., Hammond, R. H. Solid State Commun. 1971, 9, 885–889. https://doi.org/10.1016/0038-1098(71)90505-9.Search in Google Scholar

14. Lee, S., Edalati, K., Iwaoka, H., Horita, Z., Ohtsuki, T., Ohkochi, T., Kotsugi, M., Kojima, T., Mizuguchi, M., Takanashi, K. Philos. Mag. Lett. 2014, 94, 639–646. https://doi.org/10.1080/09500839.2014.955546.Search in Google Scholar

15. Laurila, T., Molarius, J. Reactive phase formation in thin film metal/metal and metal/silicon diffusion couples. Crit. Rev. Solid State Mater. Sci. 2003, 28, 185–230. https://doi.org/10.1080/10408430390261955.Search in Google Scholar

16. Hecker, S. S. MRS Bull. 2001, 26, 672–678. https://doi.org/10.1557/mrs2001.176.Search in Google Scholar

17. Hecker, S. S., Timofeeva, L. F. Los Alamos Sci. 2000, 26, 244–251.Search in Google Scholar

18. Turchi, P. E. A., Kaufman, L., Zhou, S., Liu, Z.-K. J. Alloys Compd. 2007, 444–445, 28–35. https://doi.org/10.1016/j.jallcom.2006.10.046.Search in Google Scholar

19. Abriata, J. P., Laughlin, D. E. Prog. Mater. Sci. 2004, 49, 367–387. https://doi.org/10.1016/S0079-6425(03)00030-6.Search in Google Scholar

20. Manzoor, A., Pandey, S., Chakraborty, D., Phillpot, S. R., Aidhy, D. S. npj Comput. Mater. 2018, 4, 1–10. https://doi.org/10.1038/s41524-018-0102-y.Search in Google Scholar

21. Jansen, M. C. R. Chim. 2018, 21, 958–968. https://doi.org/10.1016/j.crci.2018.03.007.Search in Google Scholar

22. Ozolinš, V., Wolverton, C., Zunger, A. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 58, R5897–R5900. https://doi.org/10.1103/PhysRevB.58.R5897.Search in Google Scholar

23. Tian, L.-Y., Levämäki, H., Eriksson, O., Kokko, K., Nagy, Á., Délczeg-Czirják, E. K., Vitos, L. Sci. Rep. 2019, 9, 8172. https://doi.org/10.1038/s41598-019-44506-7.Search in Google Scholar PubMed PubMed Central

24. Mohri, T., Chen, Y., Jufuku, Y. Calphad 2009, 33, 244–249. https://doi.org/10.1016/j.calphad.2008.09.005.Search in Google Scholar

25. Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., Dautreppe, D. J. Appl. Phys. 1964, 35, 873–876. https://doi.org/10.1063/1.1713516.Search in Google Scholar

26. Li, K., Fu, C. C. Phys. Rev. Mater. 2020, 4, 1–11. https://doi.org/10.1103/PhysRevMaterials.4.023606.Search in Google Scholar

27. van de Walle, A., Ceder, G. Rev. Mod. Phys. 2002, 74, 11–45. https://doi.org/10.1103/RevModPhys.74.11.Search in Google Scholar

28. Shang, S.-L., Wang, Y., Du, Y., Liu, Z.-K. Intermetallics 2010, 18, 961–964. https://doi.org/10.1016/j.intermet.2010.01.011.Search in Google Scholar

29. Colinet, C., Wolf, W., Podloucky, R., Pasturel, A. Appl. Phys. Lett. 2005, 87, 41910. https://doi.org/10.1063/1.2000340.Search in Google Scholar

30. Jiang, C., Liu, Z. K. J. Phase Equilibria Diffus. 2018, 39, 584–591. https://doi.org/10.1007/s11669-018-0646-z.Search in Google Scholar

31. Wolverton, C., Ozolinš, V. Phys. Rev. Lett. 2001, 86, 5518–5521. https://doi.org/10.1103/PhysRevLett.86.5518.Search in Google Scholar PubMed

32. Porter, D. A., Easterling, K. E. Phase Transformations in Metals and Alloys (Revised Reprint), 3rd ed.; CRC Press: Boca Raton, 2009.10.1201/9781439883570Search in Google Scholar

33. Christian, J. W. The Theory of Transformations in Metals and Alloys; Pergamon Press: New York, Oxford, 2002; pp. 718–796.10.1016/B978-008044019-4/50021-0Search in Google Scholar

34. Scorzelli, R. B. Hyperfine Interact. 1997, 110, 143–150. https://doi.org/10.1023/A:1012679517295.10.1023/A:1012679517295Search in Google Scholar

35. Paulevé, J., Dautreppe, D., Laugier, J., Néel, L. J. Phys. Radium 1962, 23, 841–843. https://doi.org/10.1051/jphysrad:019620023010084100.10.1051/jphysrad:019620023010084100Search in Google Scholar

36. Clarke, R. S., Scott, E. R. D. Am. Mineral. 1980, 65, 624–630.10.1542/peds.65.3.630Search in Google Scholar

37. Kurichenko, V. L., Karpenkov, D. Y., Karpenkov, A. Y., Lyakhova, M. B., Khovaylo, V. V. J. Magn. Magn. Mater. 2019, 470, 33–37. https://doi.org/10.1016/j.jmmm.2017.11.040.Search in Google Scholar

38. Amaral, L., Scorzelli, R. B., Brückman, M. E., Paesano, A., Schmidt, J. E., Shinjo, T., Hosoito, N. J. Appl. Phys. 1997, 81, 4773–4775. https://doi.org/10.1063/1.364679.Search in Google Scholar

39. Wang, Y., Lv, J., Zhu, L., Ma, Y. Comput. Phys. Commun. 2012, 183, 2063–2070. https://doi.org/10.1016/j.cpc.2012.05.008.Search in Google Scholar

40. Wu, S. Q., Ji, M., Wang, C. Z., Nguyen, M. C., Zhao, X., Umemoto, K., Wentzcovitch, R. M., Ho, K. M. J. Phys.: Condens. Matter 2014, 26, 035402. https://doi.org/10.1088/0953-8984/26/3/035402.Search in Google Scholar PubMed

41. Pickard, C. J., Needs, R. J. J. Phys.: Condens. Matter 2011, 23, 053201, https://doi.org/10.1088/0953-8984/23/5/053201.Search in Google Scholar PubMed

42. Glass, C. W., Oganov, A. R., Hansen, N. Comput. Phys. Commun. 2006, 175, 713–720. https://doi.org/10.1016/j.cpc.2006.07.020.Search in Google Scholar

43. Trimarchi, G., Zunger, A. Phys. Rev. B 2007, 75, 104113. https://doi.org/10.1103/PhysRevB.75.104113.Search in Google Scholar

44. Lonie, D. C., Zurek, E. Comput. Phys. Commun. 2011, 182, 372–387. https://doi.org/10.1016/j.cpc.2010.07.048.Search in Google Scholar

45. Bahmann, S., Kortus, J. Comput. Phys. Commun. 2013, 18, 1618–1625. https://doi.org/10.1016/j.cpc.2013.02.007.Search in Google Scholar

46. Lotfi, S., Brgoch, J. Chem. Eur. J. 2020, 26, 8689–8697. https://doi.org/10.1002/chem.202000742.Search in Google Scholar PubMed

47. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515–562. https://doi.org/10.1103/RevModPhys.73.515.Search in Google Scholar

48. van de Walle, A., Ceder, G. Rev. Mod. Phys. 2002, 74, 11–45. https://doi.org/10.1103/RevModPhys.74.11.Search in Google Scholar

49. Zhang, J., Li, X., Dong, X., Dong, H., Oganov, A. R., McMahon, J. M. Phys. Rev. B 2021, 104, 134111. https://doi.org/10.1103/PhysRevB.104.134111.Search in Google Scholar

50. Liu, D., Dai, X., Wen, X., Qin, G., Meng, X. Comput. Mater. Sci. 2015, 106, 180–187. https://doi.org/10.1016/j.commatsci.2015.04.038.Search in Google Scholar

51. Nayeb-Hashemi, A. A., Clark, J. B. Bull. Alloy Phase Diagrams 1984, 5, 466–476. https://doi.org/10.1007/BF02872898.Search in Google Scholar

52. Taylor, R. H., Curtarolo, S., Hart, G. L. W. Phys. Rev. B 2011, 84, 084101. https://doi.org/10.1103/PhysRevB.84.084101.Search in Google Scholar

53. Taylor, R. H., Curtarolo, S., Hart, G. L. W. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 024112. https://doi.org/10.1103/PhysRevB.81.024112.Search in Google Scholar

54. Hart, G. L. W., Curtarolo, S., Massalski, T. B., Levy, O. Phys. Rev. X 2014, 3, 1–33. https://doi.org/10.1103/PhysRevX.3.041035.Search in Google Scholar

55. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O. Comput. Mater. Sci. 2012, 58, 227–235. https://doi.org/10.1016/j.commatsci.2012.02.002.Search in Google Scholar

56. Smith, J. F. Bull. Alloy Phase Diagr. 1984, 5, 184–194. https://doi.org/10.1007/BF02868958.Search in Google Scholar

57. Bloch, J., Levy, O., Pejova, B., Jacob, J., Curtarolo, S., Hjörvarsson, B. Phys. Rev. Lett. 2012, 108, 1–5. https://doi.org/10.1103/PhysRevLett.108.215503.Search in Google Scholar PubMed

58. Kojima, T., Ogiwara, M., Mizuguchi, M., Kotsugi, M., Koganezawa, T., Ohtsuki, T., Tashiro, T. Y., Takanashi, K. J. Phys.: Condens. Matter 2014, 26, 064207. https://doi.org/10.1088/0953-8984/26/6/064207.Search in Google Scholar PubMed

59. Nayak, B., Meyer, F. M. Am. Mineral. 2015, 100, 209–214. https://doi.org/10.2138/am-2015-5061.Search in Google Scholar

60. Shima, T., Okamura, M., Mitani, S., Takanashi, K. J. Magn. Magn. Mater. 2007, 310, 2213–2214. https://doi.org/10.1016/j.jmmm.2006.10.799.Search in Google Scholar

61. Kojima, T., Mizuguchi, M., Koganezawa, T., Ogiwara, M., Kotsugi, M., Ohtsuki, T., Tashiro, T. Y., Takanashi, K. J. Phys. D Appl. Phys. 2014, 47, 425001. https://doi.org/10.1088/0022-3727/47/42/425001.Search in Google Scholar

62. Was, G. S. Radiation-enhanced diffusion and defect reaction rate theory. In Fundamentals of Radiation Materials Science; Springer: New York, 2017; pp. 207–252. https://doi.org/10.1007/978-1-4939-3438-6_5Search in Google Scholar

63. Dos Santos, E., Gattacceca, J., Rochette, P., Fillion, G., Scorzelli, R. B. J. Magn. Magn. Mater. 2015, 375, 234–241. https://doi.org/10.1016/j.jmmm.2014.09.051.Search in Google Scholar

64. Oh-Ishi, K., Edalati, K., Kim, H. S., Hono, K., Horita, Z. Acta Mater. 2013, 61, 3482–3489. https://doi.org/10.1016/j.actamat.2013.02.042.Search in Google Scholar

65. Straumal, B. B., Mazilkin, A. A., Baretzky, B., Schütz, G., Rabkin, E., Valiev, R. Z. Mater. Trans. 2012, 53, 63–71. https://doi.org/10.2320/matertrans.MD201111.Search in Google Scholar

66. Edalati, K., Emami, H., Ikeda, Y., Iwaoka, H., Tanaka, I., Akiba, E., Horita, Z. Acta Mater. 2016, 108, 293–303. https://doi.org/10.1016/j.actamat.2016.02.026.Search in Google Scholar

67. Gómez, E. I. L., Edalati, K., Coimbrão, D. D. AIP Adv. 2020, 10 , 055222. https://doi.org/10.1063/5.0009456.Search in Google Scholar

Received: 2023-02-24
Accepted: 2023-04-24
Published Online: 2023-12-13
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0074/html
Scroll to top button