Abstract
Thanks to the development of quantum mechanics-based crystal structure prediction methods in the past decade, numerous new compounds with low temperature thermodynamic stability, mainly binary intermetallic compounds, have been predicted. Differing from conventional alloy materials, the synthesis of these low temperature stable compounds may be impossible relying on traditional thermal activation methods since thermally activated atomic diffusion at low temperatures is so slow that phase formation may require cosmic-scale time. Strikingly, it has been shown that some special experimental methods can successfully synthesize low temperature stable compounds by introducing a large number of vacancies and defects into the material to enable atomic rearrangement and simultaneously increasing the phase transformation driving force to accelerate the reaction kinetics. This review summarizes the predictions of compounds that have not been experimentally reported to be stable at low temperatures and provides some experimental approaches that can be used for future synthesis. We describe the basic thermodynamics and kinetics of phase formation, show how compound formation is constrained at low temperatures, and illustrate that the formation of some compounds is nearly impossible without enhanced kinetics.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Yue XING: Writing – original draft, Writing – review & editing. Zheng LI: Writing – review & editing. Huai Yu HOU: Investigation. Ying LIU: Investigation. Jing Tao WANG: Conceptualization, Methodology, Writing – review & editing, Funding acquisition.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Natural Science Foundation of China (Grant No. 52074160).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Laughlin, D. E., Massalski, T. B. Prog. Mater. Sci. 2021, 120, 100715. https://doi.org/10.1016/j.pmatsci.2020.100715.Search in Google Scholar
2. Pentin, I. V., Schön, J. C., Jansen, M. Phys. Rev. B 2010, 82, 144102. https://doi.org/10.1103/PhysRevB.82.144102.Search in Google Scholar
3. Yang, C. W., Williams, D. B., Goldstein, J. I. J. Phase Equilib. Diffus. 1996, 17, 522–531. https://doi.org/10.1007/BF02665999.Search in Google Scholar
4. Murray, J. L. Al-V (aluminum-vanadium). J. Phase Equilib., 1989, 10, 351–357. https://doi.org/10.1007/BF02877591.Search in Google Scholar
5. Desiraju, G. R. Nat. Mater. 2002, 1, 77–79. https://doi.org/10.1038/nmat726.Search in Google Scholar PubMed
6. Curtarolo, S., Setyawan, W., Hart, G. L. W., Jahnatek, M., Chepulskii, R. V., Taylor, R. H., Wang, S., Xue, J., Yang, K., Levy, O., Mehl, M. J., Stokes, H. T., Demchenko, D. O., Morgan, D. Comput. Mater. Sci. 2012, 58, 218–226. https://doi.org/10.1016/j.commatsci.2012.02.005.Search in Google Scholar
7. Oganov, A. R., Pickard, C. J., Zhu, Q., Needs, R. J. Nat. Rev. Mater. 2019, 4, 331–348. https://doi.org/10.1038/s41578-019-0101-8.Search in Google Scholar
8. Levy, O., Hart, G. L. W., Curtarolo, S. Acta Mater. 2010, 58, 2887–2897. https://doi.org/10.1016/j.actamat.2010.01.017.Search in Google Scholar
9. Jahnátek, M., Levy, O., Hart, G. L. W., Nelson, L. J., Chepulskii, R. V., Xue, J., Curtarolo, S. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 84, 214110. https://doi.org/10.1103/PhysRevB.84.214110.Search in Google Scholar
10. Levy, O., Jahnátek, M., Chepulskii, R. V., Hart, G. L. W., Curtarolo, S. J. Am. Chem. Soc. 2011, 133, 158–163. https://doi.org/10.1021/ja1091672.Search in Google Scholar PubMed
11. Curtarolo, S., Morgan, D., Ceder, G. Calphad Comput. Coupling Phase Diagrams Thermochem. 2005, 29, 163–211. https://doi.org/10.1016/j.calphad.2005.01.002.Search in Google Scholar
12. Chamberod, A., Laugier, J., Penisson, J. M. J. Magn. Magn. Mater. 1979, 10, 139–144. https://doi.org/10.1016/0304-8853(79)90165-3.Search in Google Scholar
13. Hartsough, L. D., Hammond, R. H. Solid State Commun. 1971, 9, 885–889. https://doi.org/10.1016/0038-1098(71)90505-9.Search in Google Scholar
14. Lee, S., Edalati, K., Iwaoka, H., Horita, Z., Ohtsuki, T., Ohkochi, T., Kotsugi, M., Kojima, T., Mizuguchi, M., Takanashi, K. Philos. Mag. Lett. 2014, 94, 639–646. https://doi.org/10.1080/09500839.2014.955546.Search in Google Scholar
15. Laurila, T., Molarius, J. Reactive phase formation in thin film metal/metal and metal/silicon diffusion couples. Crit. Rev. Solid State Mater. Sci. 2003, 28, 185–230. https://doi.org/10.1080/10408430390261955.Search in Google Scholar
16. Hecker, S. S. MRS Bull. 2001, 26, 672–678. https://doi.org/10.1557/mrs2001.176.Search in Google Scholar
17. Hecker, S. S., Timofeeva, L. F. Los Alamos Sci. 2000, 26, 244–251.Search in Google Scholar
18. Turchi, P. E. A., Kaufman, L., Zhou, S., Liu, Z.-K. J. Alloys Compd. 2007, 444–445, 28–35. https://doi.org/10.1016/j.jallcom.2006.10.046.Search in Google Scholar
19. Abriata, J. P., Laughlin, D. E. Prog. Mater. Sci. 2004, 49, 367–387. https://doi.org/10.1016/S0079-6425(03)00030-6.Search in Google Scholar
20. Manzoor, A., Pandey, S., Chakraborty, D., Phillpot, S. R., Aidhy, D. S. npj Comput. Mater. 2018, 4, 1–10. https://doi.org/10.1038/s41524-018-0102-y.Search in Google Scholar
21. Jansen, M. C. R. Chim. 2018, 21, 958–968. https://doi.org/10.1016/j.crci.2018.03.007.Search in Google Scholar
22. Ozolinš, V., Wolverton, C., Zunger, A. Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 58, R5897–R5900. https://doi.org/10.1103/PhysRevB.58.R5897.Search in Google Scholar
23. Tian, L.-Y., Levämäki, H., Eriksson, O., Kokko, K., Nagy, Á., Délczeg-Czirják, E. K., Vitos, L. Sci. Rep. 2019, 9, 8172. https://doi.org/10.1038/s41598-019-44506-7.Search in Google Scholar PubMed PubMed Central
24. Mohri, T., Chen, Y., Jufuku, Y. Calphad 2009, 33, 244–249. https://doi.org/10.1016/j.calphad.2008.09.005.Search in Google Scholar
25. Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., Dautreppe, D. J. Appl. Phys. 1964, 35, 873–876. https://doi.org/10.1063/1.1713516.Search in Google Scholar
26. Li, K., Fu, C. C. Phys. Rev. Mater. 2020, 4, 1–11. https://doi.org/10.1103/PhysRevMaterials.4.023606.Search in Google Scholar
27. van de Walle, A., Ceder, G. Rev. Mod. Phys. 2002, 74, 11–45. https://doi.org/10.1103/RevModPhys.74.11.Search in Google Scholar
28. Shang, S.-L., Wang, Y., Du, Y., Liu, Z.-K. Intermetallics 2010, 18, 961–964. https://doi.org/10.1016/j.intermet.2010.01.011.Search in Google Scholar
29. Colinet, C., Wolf, W., Podloucky, R., Pasturel, A. Appl. Phys. Lett. 2005, 87, 41910. https://doi.org/10.1063/1.2000340.Search in Google Scholar
30. Jiang, C., Liu, Z. K. J. Phase Equilibria Diffus. 2018, 39, 584–591. https://doi.org/10.1007/s11669-018-0646-z.Search in Google Scholar
31. Wolverton, C., Ozolinš, V. Phys. Rev. Lett. 2001, 86, 5518–5521. https://doi.org/10.1103/PhysRevLett.86.5518.Search in Google Scholar PubMed
32. Porter, D. A., Easterling, K. E. Phase Transformations in Metals and Alloys (Revised Reprint), 3rd ed.; CRC Press: Boca Raton, 2009.10.1201/9781439883570Search in Google Scholar
33. Christian, J. W. The Theory of Transformations in Metals and Alloys; Pergamon Press: New York, Oxford, 2002; pp. 718–796.10.1016/B978-008044019-4/50021-0Search in Google Scholar
34. Scorzelli, R. B. Hyperfine Interact. 1997, 110, 143–150. https://doi.org/10.1023/A:1012679517295.10.1023/A:1012679517295Search in Google Scholar
35. Paulevé, J., Dautreppe, D., Laugier, J., Néel, L. J. Phys. Radium 1962, 23, 841–843. https://doi.org/10.1051/jphysrad:019620023010084100.10.1051/jphysrad:019620023010084100Search in Google Scholar
36. Clarke, R. S., Scott, E. R. D. Am. Mineral. 1980, 65, 624–630.10.1542/peds.65.3.630Search in Google Scholar
37. Kurichenko, V. L., Karpenkov, D. Y., Karpenkov, A. Y., Lyakhova, M. B., Khovaylo, V. V. J. Magn. Magn. Mater. 2019, 470, 33–37. https://doi.org/10.1016/j.jmmm.2017.11.040.Search in Google Scholar
38. Amaral, L., Scorzelli, R. B., Brückman, M. E., Paesano, A., Schmidt, J. E., Shinjo, T., Hosoito, N. J. Appl. Phys. 1997, 81, 4773–4775. https://doi.org/10.1063/1.364679.Search in Google Scholar
39. Wang, Y., Lv, J., Zhu, L., Ma, Y. Comput. Phys. Commun. 2012, 183, 2063–2070. https://doi.org/10.1016/j.cpc.2012.05.008.Search in Google Scholar
40. Wu, S. Q., Ji, M., Wang, C. Z., Nguyen, M. C., Zhao, X., Umemoto, K., Wentzcovitch, R. M., Ho, K. M. J. Phys.: Condens. Matter 2014, 26, 035402. https://doi.org/10.1088/0953-8984/26/3/035402.Search in Google Scholar PubMed
41. Pickard, C. J., Needs, R. J. J. Phys.: Condens. Matter 2011, 23, 053201, https://doi.org/10.1088/0953-8984/23/5/053201.Search in Google Scholar PubMed
42. Glass, C. W., Oganov, A. R., Hansen, N. Comput. Phys. Commun. 2006, 175, 713–720. https://doi.org/10.1016/j.cpc.2006.07.020.Search in Google Scholar
43. Trimarchi, G., Zunger, A. Phys. Rev. B 2007, 75, 104113. https://doi.org/10.1103/PhysRevB.75.104113.Search in Google Scholar
44. Lonie, D. C., Zurek, E. Comput. Phys. Commun. 2011, 182, 372–387. https://doi.org/10.1016/j.cpc.2010.07.048.Search in Google Scholar
45. Bahmann, S., Kortus, J. Comput. Phys. Commun. 2013, 18, 1618–1625. https://doi.org/10.1016/j.cpc.2013.02.007.Search in Google Scholar
46. Lotfi, S., Brgoch, J. Chem. Eur. J. 2020, 26, 8689–8697. https://doi.org/10.1002/chem.202000742.Search in Google Scholar PubMed
47. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P. Rev. Mod. Phys. 2001, 73, 515–562. https://doi.org/10.1103/RevModPhys.73.515.Search in Google Scholar
48. van de Walle, A., Ceder, G. Rev. Mod. Phys. 2002, 74, 11–45. https://doi.org/10.1103/RevModPhys.74.11.Search in Google Scholar
49. Zhang, J., Li, X., Dong, X., Dong, H., Oganov, A. R., McMahon, J. M. Phys. Rev. B 2021, 104, 134111. https://doi.org/10.1103/PhysRevB.104.134111.Search in Google Scholar
50. Liu, D., Dai, X., Wen, X., Qin, G., Meng, X. Comput. Mater. Sci. 2015, 106, 180–187. https://doi.org/10.1016/j.commatsci.2015.04.038.Search in Google Scholar
51. Nayeb-Hashemi, A. A., Clark, J. B. Bull. Alloy Phase Diagrams 1984, 5, 466–476. https://doi.org/10.1007/BF02872898.Search in Google Scholar
52. Taylor, R. H., Curtarolo, S., Hart, G. L. W. Phys. Rev. B 2011, 84, 084101. https://doi.org/10.1103/PhysRevB.84.084101.Search in Google Scholar
53. Taylor, R. H., Curtarolo, S., Hart, G. L. W. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 024112. https://doi.org/10.1103/PhysRevB.81.024112.Search in Google Scholar
54. Hart, G. L. W., Curtarolo, S., Massalski, T. B., Levy, O. Phys. Rev. X 2014, 3, 1–33. https://doi.org/10.1103/PhysRevX.3.041035.Search in Google Scholar
55. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R. H., Nelson, L. J., Hart, G. L., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O. Comput. Mater. Sci. 2012, 58, 227–235. https://doi.org/10.1016/j.commatsci.2012.02.002.Search in Google Scholar
56. Smith, J. F. Bull. Alloy Phase Diagr. 1984, 5, 184–194. https://doi.org/10.1007/BF02868958.Search in Google Scholar
57. Bloch, J., Levy, O., Pejova, B., Jacob, J., Curtarolo, S., Hjörvarsson, B. Phys. Rev. Lett. 2012, 108, 1–5. https://doi.org/10.1103/PhysRevLett.108.215503.Search in Google Scholar PubMed
58. Kojima, T., Ogiwara, M., Mizuguchi, M., Kotsugi, M., Koganezawa, T., Ohtsuki, T., Tashiro, T. Y., Takanashi, K. J. Phys.: Condens. Matter 2014, 26, 064207. https://doi.org/10.1088/0953-8984/26/6/064207.Search in Google Scholar PubMed
59. Nayak, B., Meyer, F. M. Am. Mineral. 2015, 100, 209–214. https://doi.org/10.2138/am-2015-5061.Search in Google Scholar
60. Shima, T., Okamura, M., Mitani, S., Takanashi, K. J. Magn. Magn. Mater. 2007, 310, 2213–2214. https://doi.org/10.1016/j.jmmm.2006.10.799.Search in Google Scholar
61. Kojima, T., Mizuguchi, M., Koganezawa, T., Ogiwara, M., Kotsugi, M., Ohtsuki, T., Tashiro, T. Y., Takanashi, K. J. Phys. D Appl. Phys. 2014, 47, 425001. https://doi.org/10.1088/0022-3727/47/42/425001.Search in Google Scholar
62. Was, G. S. Radiation-enhanced diffusion and defect reaction rate theory. In Fundamentals of Radiation Materials Science; Springer: New York, 2017; pp. 207–252. https://doi.org/10.1007/978-1-4939-3438-6_5Search in Google Scholar
63. Dos Santos, E., Gattacceca, J., Rochette, P., Fillion, G., Scorzelli, R. B. J. Magn. Magn. Mater. 2015, 375, 234–241. https://doi.org/10.1016/j.jmmm.2014.09.051.Search in Google Scholar
64. Oh-Ishi, K., Edalati, K., Kim, H. S., Hono, K., Horita, Z. Acta Mater. 2013, 61, 3482–3489. https://doi.org/10.1016/j.actamat.2013.02.042.Search in Google Scholar
65. Straumal, B. B., Mazilkin, A. A., Baretzky, B., Schütz, G., Rabkin, E., Valiev, R. Z. Mater. Trans. 2012, 53, 63–71. https://doi.org/10.2320/matertrans.MD201111.Search in Google Scholar
66. Edalati, K., Emami, H., Ikeda, Y., Iwaoka, H., Tanaka, I., Akiba, E., Horita, Z. Acta Mater. 2016, 108, 293–303. https://doi.org/10.1016/j.actamat.2016.02.026.Search in Google Scholar
67. Gómez, E. I. L., Edalati, K., Coimbrão, D. D. AIP Adv. 2020, 10 , 055222. https://doi.org/10.1063/5.0009456.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde