Abstract
In this current research work, magnesium AZ61 (Advancing Side) and aluminum 6061-T6 (Retreating Side) alloys were joined using the zinc interlayer friction stir welding technique at the optimum process parameters. The aim of this work is to propose an effective alternative to overcome issues related to aluminum/magnesium joints. This article investigates the effects of zinc foil (0.2 mm) on the weld surface (3 mm aluminum/magnesium plates), intermetallic compound characteristics, microstructure, fracture surface and strength of joint. The emergence and nature of intermetallic compounds during aluminum/magnesium and aluminum/zinc/magnesium friction stir welded joints were studied in detail. As can be seen from the findings, using zinc in aluminum/magnesium friction stir welded joints inhibits the emergence of brittle aluminum–magnesium intermetallic compounds and promotes the formation of magnesium–zinc intermetallic compounds in the stir zone by introducing the zinc interlayer, confirmed through X-ray diffraction analysis. Furthermore, the average tensile performance (181.33 MPa) of friction stir welded aluminum/zinc/magnesium joints was enhanced up to 18.26 % compared to aluminum/magnesium friction stir welded joints (153.33 MPa). The promising results of this research establish an alternative route with a cost-effective technique to enhance the aluminum/magnesium dissimilar joint strength.
Acknowledgements
The testing and characterization facilities of IIT Kanpur (ACMS Lab), NIT Rourkela, Central workshop NIT Jamshedpur are gratefully acknowledged. The authors want to express their sincere gratitude to Mr. Iqbal Ansari and Mr. Yogendra Pratap Singh for their invaluable support in the efficacious conduction of experimental and characterization work.
-
Research ethics: Not applicable.
-
Author contributions: Mukesh Kumar: investigation, formal analysis, writing – original draft; Ashish Das: conceptualization. supervision, methodology, writing – review & editing; Raj Ballav: supervision, writing – review & editing; Niraj Kumar: experimentation; Keshav K. Sharma: testing.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: The authors would wish to thank the Ministry of Education and Government of India (PhD Scholarship Grant No:O.O.NO.NITJSR/ACAD/2018/443), for providing essential financial assistance.
-
Data availability: Not applicable.
References
1. Fuse, K., Badheka, V. Metals 2021, 11, 1. https://doi.org/10.3390/met11010016.Search in Google Scholar
2. Bagheri, B., Sharifi, F., Abbasi, M., Abdollahzadeh, A. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 2022, 236, 299. https://doi.org/10.1177/14644207211044407.Search in Google Scholar
3. Chen, W., Wang, W., Liu, Z., Zhai, X., Bian, G., Zhang, T., Dong, P. J. Alloys Compd. 2021, 861, 157942. https://doi.org/10.1016/j.jallcom.2020.157942.Search in Google Scholar
4. Singh, K., Singh, G., Singh, H. J. Magnesium Alloys 2018, 6, 399. https://doi.org/10.1016/j.jma.2018.06.001.Search in Google Scholar
5. Kulekci, M. K. Int. J. Adv. Manuf. Syst. 2008, 39, 851. https://doi.org/10.1007/s00170-007-1279-2.Search in Google Scholar
6. Asrari, G., Daneshifar, M. H., Hosseini, S. A., Alishahi, M. Mater. Lett. 2022, 308, 131073. https://doi.org/10.1016/j.matlet.2021.131073.Search in Google Scholar
7. Lee, C. Y., Choi, D. H., Yeon, Y. M., Jung, S. B. Sci. Technol. Weld. Join. 2009, 14, 216. https://doi.org/10.1179/136217109X400439.Search in Google Scholar
8. Pourahmad, P., Abbasi, M. Trans. Nonferrous Met. Soc. 2013, 23, 1253. https://doi.org/10.1016/S1003-6326(13)62590-X.Search in Google Scholar
9. Abdollahzadeh, A., Shokuhfar, A., Cabrera, J. M., Zhilyaev, A. P., Omidvar, H. J. Mater. Process. Technol. 2019, 263, 296. https://doi.org/10.1016/j.jmatprotec.2018.08.025.Search in Google Scholar
10. Anjinappa, C. S., Alamri, S., Afzal, A., Kaladgi, A. R., Saleel C. A., Hasan, N., Saleh, B. Adv. Mech. Eng. 2022, 14, 168781322211204. https://doi.org/10.1177/16878132221120460.Search in Google Scholar
11. Mohammadi, J., Behnamian, Y., Mostafaei, A., Izadi, H., Saeid, T., Kokabi, A. H., Gerlich, A. P. Mater. Charact. 2015, 101, 189. https://doi.org/10.1016/j.matchar.2015.01.008.Search in Google Scholar
12. Bagheri, B., Abbasi, M., Dadaei, M. J. Mater. Eng. Perform. 2020, 29, 1165. https://doi.org/10.1007/s11665-020-04639-7.Search in Google Scholar
13. Rahmi, M., Abbasi, M. Int. J. Adv. Manuf. Technol. 2017, 90, 141. https://doi.org/10.1007/s00170-016-9383-9.Search in Google Scholar
14. Kumar, M., Das, A., Ballav, R. Mater. Today Proc. 2020, 33, 4951. https://doi.org/10.1016/j.matpr.2020.02.689.Search in Google Scholar
15. Bag, S., Akinlabi, E. T. Mater. Sci. Eng. A 2019, 1, 225. https://doi.org/10.1016/b978-0-12-803581-8.11153-1.Search in Google Scholar
16. Abdollahzadeh, A., Bagheri, B., Vaneghi, A. H., Shamsipur, A., Mirsalehi, S. E. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 2022, 237, 6. https://doi.org/10.1177/14644207221146981.Search in Google Scholar
17. Ji, S., Huang, R., Meng, X., Zhang, L., Huang, Y. J. Mater. Eng. Perform. 2017, 26, 2359. https://doi.org/10.1007/s11665-017-2640-8.Search in Google Scholar
18. Rao, H. M., Ghaffari, B., Yuan, W., Jordon, J. B., Badarinarayan, H. Mater. Sci. Eng. A 2016, 651, 27. https://doi.org/10.1016/j.msea.2015.10.082.Search in Google Scholar
19. Meng, X., Huang, Y., Cao, J., Shen, J., dos Santos, J. F. Prog. Mater. Sci. 2021, 115, 100706. https://doi.org/10.1016/j.pmatsci.2020.100706.Search in Google Scholar
20. Lv, X. Q., Wu, C. S., Padhy, G. K. Mater. Lett. 2017, 203, 81. https://doi.org/10.1016/j.matlet.2017.05.090.Search in Google Scholar
21. Zhao, J., Wu, C., Shi, L., Su, H. J. Mater. Sci. Technol. 2023, 139, 31. https://doi.org/10.1016/j.jmst.2022.08.025.Search in Google Scholar
22. Sato, Y. S., Park, S. H. C., Michiuchi, M., Kokawa, H. Scr. Mater. 2004, 50, 1233. https://doi.org/10.1016/j.scriptamat.2004.02.002.Search in Google Scholar
23. Yamamoto, N., Liao, J., Watanabe, S., Nakata, K. Mater. Trans. 2009, 50, 2833. https://doi.org/10.2320/matertrans.M2009289.Search in Google Scholar
24. Venkateswaran, P., Reynolds, A. P. Mater. Sci. Eng. A 2012, 545, 26. https://doi.org/10.1016/j.msea.2012.02.069.Search in Google Scholar
25. Dorbane, A., Mansoor, B., Ayoub, G., Shunmugasamy, V. C., Imad, A. Mater. Sci. Eng., A 2016, 651, 720. https://doi.org/10.1016/j.msea.2015.11.019.Search in Google Scholar
26. Mofid, M. A., Abdollah-zadeh, A., Malek Ghaini, F. Mater. Des. 2012, 36, 161. https://doi.org/10.1016/j.matdes.2011.11.004.Search in Google Scholar
27. Tabasi, M., Farahani, M., Givi, M. K. B., Farzami, M., Moharami, A. Int. J. Adv. Manuf. Technol. 2016, 86, 705. https://doi.org/10.1007/s00170-015-8211-y.Search in Google Scholar
28. Abbasi, M., Bagheri, B., Sharifi, F., Abdollahzadeh, A. Weld. World 2021, 65, 2207. https://doi.org/10.1007/s40194-021-01173-5.Search in Google Scholar
29. Bagheri, B., Abbasi, M., Abdollahzadeh, A. Int. J. Miner. Metall. 2021, 28, 450. https://doi.org/10.1007/s12613-020-2085-1.Search in Google Scholar
30. Swarnkar, R., Chaudhary, S., Das, A., Prasad, S. B., Kumar, M., Ballav, R. Trans. Indian Inst. Met. 2021, 74, 705. https://doi.org/10.1007/s12666-020-02156-8.Search in Google Scholar
31. Swarnkar, R., Das, A., Prasad, S. B. Russ. J. Non-Ferrous Metals 2021, 62, 333. https://doi.org/10.3103/S1067821221030147.Search in Google Scholar
32. Vaneghi, A. H., Bagheri, B., Shamsipur, A., Mirsalehi, S. E., Abdollahzadeh, A. Weld. World 2022, 66, 2351. https://doi.org/10.1007/s40194-022-01366-6.Search in Google Scholar
33. Paidar, M., Elveny, M., Mehrez, S., Ravi, S., Babaei, B., Ravichandran, M. Mater. Lett. 2021, 301, 130250. https://doi.org/10.1016/j.matlet.2021.130250.Search in Google Scholar
34. Shahrabadi, A., Ezatpour, H., Paidar, M. Mater. Lett. 2022, 328, 133107. https://doi.org/10.1016/j.matlet.2022.133107.Search in Google Scholar
35. Fan, G., Paidar, M., Mehrez, S., Ojo, O. O., Liu, M., Dai, Y., Mahariq, I. Vacuum 2022, 197, 110809. https://doi.org/10.1016/j.vacuum.2021.110809.Search in Google Scholar
36. Paidar, M., Mohanavel, V., Ojo, O. O., Mehrez, S., Rajkumar, S., Ravichandran, M. Results Phys. 2021, 24, 104101. https://doi.org/10.1016/j.rinp.2021.104101.Search in Google Scholar
37. Kumar, M., Das, A., Ballav, R. Mater. Today Proc. 2020, 26, 2123. https://doi.org/10.1016/j.matpr.2020.02.458.Search in Google Scholar
38. Zheng, Y., Pan, X., Ma, Y., Liu, S., Zang, L., Chen, Y. Materials 2019, 12, 1115. https://doi.org/10.3390/ma12071115.Search in Google Scholar PubMed PubMed Central
39. Karimi-Dermani, O., Abbasi, A., Roeen, G. A., Nayyeri, M. J. J. Manuf. Process. 2021, 68, 616. https://doi.org/10.1016/j.jmapro.2021.05.068.Search in Google Scholar
40. Xu, R. Z., Ni, D. R., Yang, Q., Liu, C. Z., Ma, Z. Y. Mater. Des. 2015, 69, 163. https://doi.org/10.1016/j.matdes.2014.12.045.Search in Google Scholar
41. Sahu, P. K., Pal, S., Pal, S. K. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 2017, 48, 3300. https://doi.org/10.1007/s11661-017-4093-y.Search in Google Scholar
42. Abdollahzadeh, A., Shokuhfar, A., Cabrera, J. M., Zhilyaev, A. P., Omidvar, H. J. Manuf. Process. 2018, 34, 18. https://doi.org/10.1016/j.jmapro.2018.05.029.Search in Google Scholar
43. Khajeh, R., Jafarian, H. R., Jabraeili, R., Eivani, A. R., Seyedein, S. H., Park, N., Heidarzadeh, A. J. Mater. Res. Technol. 2022, 16, 251. https://doi.org/10.1016/j.jmrt.2021.11.133.Search in Google Scholar
44. Firouzdor, V., Kou, S. Metall. Mater. Trans. A 2010, 41, 3238. https://doi.org/10.1007/s11661-010-0366-4.Search in Google Scholar
45. Morishige, T., Kawaguchi, A., Tsujikawa, M., Hino, M., Hirata, T., Higashi, K. Mater. Trans. 2008, 49, 1129. https://doi.org/10.2320/matertrans.MC200768.Search in Google Scholar
46. Paidar, M., Mehrez, S., Babaei, B., Memon, S., Ojo, O. O., Lankarani, H. M. Mater. Lett. 2021, 301, 129764. https://doi.org/10.1016/j.matlet.2021.129764.Search in Google Scholar
47. Ji, S., Niu, S., Liu, J., Meng, X. J. Mater. Process. Technol. 2019, 267, 141. https://doi.org/10.1016/j.jmatprotec.2018.12.010.Search in Google Scholar
48. Kumar, S., Wu, C. J. Mater. Res. Technol. 2021, 15, 4353. https://doi.org/10.1016/j.jmrt.2021.10.065.Search in Google Scholar
49. Gan, R., Jin, Y. Sci. Technol. Weld. Join. 2018, 23, 164. https://doi.org/10.1080/13621718.2017.1354545.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde