Home Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
Article
Licensed
Unlicensed Requires Authentication

Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds

  • Mukesh Kumar , Ashish Das EMAIL logo , Raj Ballav , Niraj Kumar and Keshav K. Sharma
Published/Copyright: November 28, 2023
Become an author with De Gruyter Brill

Abstract

In this current research work, magnesium AZ61 (Advancing Side) and aluminum 6061-T6 (Retreating Side) alloys were joined using the zinc interlayer friction stir welding technique at the optimum process parameters. The aim of this work is to propose an effective alternative to overcome issues related to aluminum/magnesium joints. This article investigates the effects of zinc foil (0.2 mm) on the weld surface (3 mm aluminum/magnesium plates), intermetallic compound characteristics, microstructure, fracture surface and strength of joint. The emergence and nature of intermetallic compounds during aluminum/magnesium and aluminum/zinc/magnesium friction stir welded joints were studied in detail. As can be seen from the findings, using zinc in aluminum/magnesium friction stir welded joints inhibits the emergence of brittle aluminum–magnesium intermetallic compounds and promotes the formation of magnesium–zinc intermetallic compounds in the stir zone by introducing the zinc interlayer, confirmed through X-ray diffraction analysis. Furthermore, the average tensile performance (181.33 MPa) of friction stir welded aluminum/zinc/magnesium joints was enhanced up to 18.26 % compared to aluminum/magnesium friction stir welded joints (153.33 MPa). The promising results of this research establish an alternative route with a cost-effective technique to enhance the aluminum/magnesium dissimilar joint strength.


Corresponding author: Ashish Das, Department of Production and Industrial Engineering, National Institute of Technology, Jamshedpur, 831014 Jharkhand, India, E-mail: , https://nitjsr.irins.org/profile/100484

Acknowledgements

The testing and characterization facilities of IIT Kanpur (ACMS Lab), NIT Rourkela, Central workshop NIT Jamshedpur are gratefully acknowledged. The authors want to express their sincere gratitude to Mr. Iqbal Ansari and Mr. Yogendra Pratap Singh for their invaluable support in the efficacious conduction of experimental and characterization work.

  1. Research ethics: Not applicable.

  2. Author contributions: Mukesh Kumar: investigation, formal analysis, writing – original draft; Ashish Das: conceptualization. supervision, methodology, writing – review & editing; Raj Ballav: supervision, writing – review & editing; Niraj Kumar: experimentation; Keshav K. Sharma: testing.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: The authors would wish to thank the Ministry of Education and Government of India (PhD Scholarship Grant No:O.O.NO.NITJSR/ACAD/2018/443), for providing essential financial assistance.

  5. Data availability: Not applicable.

References

1. Fuse, K., Badheka, V. Metals 2021, 11, 1. https://doi.org/10.3390/met11010016.Search in Google Scholar

2. Bagheri, B., Sharifi, F., Abbasi, M., Abdollahzadeh, A. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 2022, 236, 299. https://doi.org/10.1177/14644207211044407.Search in Google Scholar

3. Chen, W., Wang, W., Liu, Z., Zhai, X., Bian, G., Zhang, T., Dong, P. J. Alloys Compd. 2021, 861, 157942. https://doi.org/10.1016/j.jallcom.2020.157942.Search in Google Scholar

4. Singh, K., Singh, G., Singh, H. J. Magnesium Alloys 2018, 6, 399. https://doi.org/10.1016/j.jma.2018.06.001.Search in Google Scholar

5. Kulekci, M. K. Int. J. Adv. Manuf. Syst. 2008, 39, 851. https://doi.org/10.1007/s00170-007-1279-2.Search in Google Scholar

6. Asrari, G., Daneshifar, M. H., Hosseini, S. A., Alishahi, M. Mater. Lett. 2022, 308, 131073. https://doi.org/10.1016/j.matlet.2021.131073.Search in Google Scholar

7. Lee, C. Y., Choi, D. H., Yeon, Y. M., Jung, S. B. Sci. Technol. Weld. Join. 2009, 14, 216. https://doi.org/10.1179/136217109X400439.Search in Google Scholar

8. Pourahmad, P., Abbasi, M. Trans. Nonferrous Met. Soc. 2013, 23, 1253. https://doi.org/10.1016/S1003-6326(13)62590-X.Search in Google Scholar

9. Abdollahzadeh, A., Shokuhfar, A., Cabrera, J. M., Zhilyaev, A. P., Omidvar, H. J. Mater. Process. Technol. 2019, 263, 296. https://doi.org/10.1016/j.jmatprotec.2018.08.025.Search in Google Scholar

10. Anjinappa, C. S., Alamri, S., Afzal, A., Kaladgi, A. R., Saleel C. A., Hasan, N., Saleh, B. Adv. Mech. Eng. 2022, 14, 168781322211204. https://doi.org/10.1177/16878132221120460.Search in Google Scholar

11. Mohammadi, J., Behnamian, Y., Mostafaei, A., Izadi, H., Saeid, T., Kokabi, A. H., Gerlich, A. P. Mater. Charact. 2015, 101, 189. https://doi.org/10.1016/j.matchar.2015.01.008.Search in Google Scholar

12. Bagheri, B., Abbasi, M., Dadaei, M. J. Mater. Eng. Perform. 2020, 29, 1165. https://doi.org/10.1007/s11665-020-04639-7.Search in Google Scholar

13. Rahmi, M., Abbasi, M. Int. J. Adv. Manuf. Technol. 2017, 90, 141. https://doi.org/10.1007/s00170-016-9383-9.Search in Google Scholar

14. Kumar, M., Das, A., Ballav, R. Mater. Today Proc. 2020, 33, 4951. https://doi.org/10.1016/j.matpr.2020.02.689.Search in Google Scholar

15. Bag, S., Akinlabi, E. T. Mater. Sci. Eng. A 2019, 1, 225. https://doi.org/10.1016/b978-0-12-803581-8.11153-1.Search in Google Scholar

16. Abdollahzadeh, A., Bagheri, B., Vaneghi, A. H., Shamsipur, A., Mirsalehi, S. E. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 2022, 237, 6. https://doi.org/10.1177/14644207221146981.Search in Google Scholar

17. Ji, S., Huang, R., Meng, X., Zhang, L., Huang, Y. J. Mater. Eng. Perform. 2017, 26, 2359. https://doi.org/10.1007/s11665-017-2640-8.Search in Google Scholar

18. Rao, H. M., Ghaffari, B., Yuan, W., Jordon, J. B., Badarinarayan, H. Mater. Sci. Eng. A 2016, 651, 27. https://doi.org/10.1016/j.msea.2015.10.082.Search in Google Scholar

19. Meng, X., Huang, Y., Cao, J., Shen, J., dos Santos, J. F. Prog. Mater. Sci. 2021, 115, 100706. https://doi.org/10.1016/j.pmatsci.2020.100706.Search in Google Scholar

20. Lv, X. Q., Wu, C. S., Padhy, G. K. Mater. Lett. 2017, 203, 81. https://doi.org/10.1016/j.matlet.2017.05.090.Search in Google Scholar

21. Zhao, J., Wu, C., Shi, L., Su, H. J. Mater. Sci. Technol. 2023, 139, 31. https://doi.org/10.1016/j.jmst.2022.08.025.Search in Google Scholar

22. Sato, Y. S., Park, S. H. C., Michiuchi, M., Kokawa, H. Scr. Mater. 2004, 50, 1233. https://doi.org/10.1016/j.scriptamat.2004.02.002.Search in Google Scholar

23. Yamamoto, N., Liao, J., Watanabe, S., Nakata, K. Mater. Trans. 2009, 50, 2833. https://doi.org/10.2320/matertrans.M2009289.Search in Google Scholar

24. Venkateswaran, P., Reynolds, A. P. Mater. Sci. Eng. A 2012, 545, 26. https://doi.org/10.1016/j.msea.2012.02.069.Search in Google Scholar

25. Dorbane, A., Mansoor, B., Ayoub, G., Shunmugasamy, V. C., Imad, A. Mater. Sci. Eng., A 2016, 651, 720. https://doi.org/10.1016/j.msea.2015.11.019.Search in Google Scholar

26. Mofid, M. A., Abdollah-zadeh, A., Malek Ghaini, F. Mater. Des. 2012, 36, 161. https://doi.org/10.1016/j.matdes.2011.11.004.Search in Google Scholar

27. Tabasi, M., Farahani, M., Givi, M. K. B., Farzami, M., Moharami, A. Int. J. Adv. Manuf. Technol. 2016, 86, 705. https://doi.org/10.1007/s00170-015-8211-y.Search in Google Scholar

28. Abbasi, M., Bagheri, B., Sharifi, F., Abdollahzadeh, A. Weld. World 2021, 65, 2207. https://doi.org/10.1007/s40194-021-01173-5.Search in Google Scholar

29. Bagheri, B., Abbasi, M., Abdollahzadeh, A. Int. J. Miner. Metall. 2021, 28, 450. https://doi.org/10.1007/s12613-020-2085-1.Search in Google Scholar

30. Swarnkar, R., Chaudhary, S., Das, A., Prasad, S. B., Kumar, M., Ballav, R. Trans. Indian Inst. Met. 2021, 74, 705. https://doi.org/10.1007/s12666-020-02156-8.Search in Google Scholar

31. Swarnkar, R., Das, A., Prasad, S. B. Russ. J. Non-Ferrous Metals 2021, 62, 333. https://doi.org/10.3103/S1067821221030147.Search in Google Scholar

32. Vaneghi, A. H., Bagheri, B., Shamsipur, A., Mirsalehi, S. E., Abdollahzadeh, A. Weld. World 2022, 66, 2351. https://doi.org/10.1007/s40194-022-01366-6.Search in Google Scholar

33. Paidar, M., Elveny, M., Mehrez, S., Ravi, S., Babaei, B., Ravichandran, M. Mater. Lett. 2021, 301, 130250. https://doi.org/10.1016/j.matlet.2021.130250.Search in Google Scholar

34. Shahrabadi, A., Ezatpour, H., Paidar, M. Mater. Lett. 2022, 328, 133107. https://doi.org/10.1016/j.matlet.2022.133107.Search in Google Scholar

35. Fan, G., Paidar, M., Mehrez, S., Ojo, O. O., Liu, M., Dai, Y., Mahariq, I. Vacuum 2022, 197, 110809. https://doi.org/10.1016/j.vacuum.2021.110809.Search in Google Scholar

36. Paidar, M., Mohanavel, V., Ojo, O. O., Mehrez, S., Rajkumar, S., Ravichandran, M. Results Phys. 2021, 24, 104101. https://doi.org/10.1016/j.rinp.2021.104101.Search in Google Scholar

37. Kumar, M., Das, A., Ballav, R. Mater. Today Proc. 2020, 26, 2123. https://doi.org/10.1016/j.matpr.2020.02.458.Search in Google Scholar

38. Zheng, Y., Pan, X., Ma, Y., Liu, S., Zang, L., Chen, Y. Materials 2019, 12, 1115. https://doi.org/10.3390/ma12071115.Search in Google Scholar PubMed PubMed Central

39. Karimi-Dermani, O., Abbasi, A., Roeen, G. A., Nayyeri, M. J. J. Manuf. Process. 2021, 68, 616. https://doi.org/10.1016/j.jmapro.2021.05.068.Search in Google Scholar

40. Xu, R. Z., Ni, D. R., Yang, Q., Liu, C. Z., Ma, Z. Y. Mater. Des. 2015, 69, 163. https://doi.org/10.1016/j.matdes.2014.12.045.Search in Google Scholar

41. Sahu, P. K., Pal, S., Pal, S. K. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 2017, 48, 3300. https://doi.org/10.1007/s11661-017-4093-y.Search in Google Scholar

42. Abdollahzadeh, A., Shokuhfar, A., Cabrera, J. M., Zhilyaev, A. P., Omidvar, H. J. Manuf. Process. 2018, 34, 18. https://doi.org/10.1016/j.jmapro.2018.05.029.Search in Google Scholar

43. Khajeh, R., Jafarian, H. R., Jabraeili, R., Eivani, A. R., Seyedein, S. H., Park, N., Heidarzadeh, A. J. Mater. Res. Technol. 2022, 16, 251. https://doi.org/10.1016/j.jmrt.2021.11.133.Search in Google Scholar

44. Firouzdor, V., Kou, S. Metall. Mater. Trans. A 2010, 41, 3238. https://doi.org/10.1007/s11661-010-0366-4.Search in Google Scholar

45. Morishige, T., Kawaguchi, A., Tsujikawa, M., Hino, M., Hirata, T., Higashi, K. Mater. Trans. 2008, 49, 1129. https://doi.org/10.2320/matertrans.MC200768.Search in Google Scholar

46. Paidar, M., Mehrez, S., Babaei, B., Memon, S., Ojo, O. O., Lankarani, H. M. Mater. Lett. 2021, 301, 129764. https://doi.org/10.1016/j.matlet.2021.129764.Search in Google Scholar

47. Ji, S., Niu, S., Liu, J., Meng, X. J. Mater. Process. Technol. 2019, 267, 141. https://doi.org/10.1016/j.jmatprotec.2018.12.010.Search in Google Scholar

48. Kumar, S., Wu, C. J. Mater. Res. Technol. 2021, 15, 4353. https://doi.org/10.1016/j.jmrt.2021.10.065.Search in Google Scholar

49. Gan, R., Jin, Y. Sci. Technol. Weld. Join. 2018, 23, 164. https://doi.org/10.1080/13621718.2017.1354545.Search in Google Scholar

Received: 2021-12-08
Accepted: 2023-03-23
Published Online: 2023-11-28
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8690/html
Scroll to top button