Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
Abstract
Nanostructured molybdenum (Mo)-doped Mn3O4 thin films were successfully deposited on stainless steel substrates by a facile electrophoretic deposition technique. The effect of Mo doping on the structural and supercapacitive properties of Mn3O4 thin films was investigated. The nanostructured morphology of spinel tetragonal Hausmannite Mn3O4 thin films was elucidated with the help of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman studies. The presence of mesopores in the nanostructure with an average pore size of 41 nm was confirmed by Brunauer–Emmett–Teller studies. The different valence states of Mn and Mo are confirmed by X-ray photoelectron spectroscopy. The symmetrical quasi-rectangular-shaped cyclic voltammetry curves without any redox peak and nearly triangular/symmetric galvanostatic charge–discharge curves for Mn3O4 thin films elucidated the pseudocapacitive behavior. Electrochemical impedance spectroscopy revealed that pure and Mo-doped Mn3O4 thin films have lower resistances. Improved supercapacitive performance of 2 % Mo-doped Mn3O4 thin film was confirmed by higher specific capacitance 497 F g−1 at a current density of 1.6 A g−1. The boosted supercapacitive performance of Mo-doped Mn3O4 thin films has identified the outstanding incorporation of Mo ions into the Mn3O4 lattice.
Acknowledgment
The authors are thankful to the co-ordinators of Sophisticated Analytical Instrument Facilities (SAIF) center- Shivaji University Kolhapur, DST-FIST research lab-Devchand College Arjunnagar, Nipani, CFC-Y.C. Institute of Science, Satara, DST-FIST Analytical Instrumentation Laboratory-Jaysingpur College, Jaysingpur, and Department of Physics, Shivaji University, Kolhapur for providing the experimental facilities to carry out this research work in a successful manner.
-
Research ethics: Not applicable.
-
Author contributions: Tanaji S. Patil: Conceptualization, Writing – Original draft preparation, Methodology. Raviraj S. Kamble: Methodology, Reviewing and editing. Rahul B. Patil: Formal analysis. Mansing V. Takale: Supervision. Satish A. Gangawane: Supervision, Reviewing, and editing.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: None declared.
-
Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
1. Chen, L. F., Zhang, X. D., Liang, H. W., Kong, M., Guan, Q. F., Chen, P., Wu, Z. Y., Yu, S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102. https://doi.org/10.1021/nn302147s.Search in Google Scholar PubMed
2. Nazarian-Samani, M., Haghighat-Shishavan, S., Nazarian-Samani, M., Kim, M. S., Cho, B. W., Oh, S. H., Kashani-Bozorg, S. F., Kim, K. B. Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors. J. Power Sources 2017, 372, 286–296. https://doi.org/10.1016/j.jpowsour.2017.10.087.Search in Google Scholar
3. Jampani, P., Manivannan, A., Kumta, P. N. Advancing the supercapacitor materials and technology Frontier for improving power quality. Electrochem. Soc. Interface 2010, 19, 57–62. https://doi.org/10.1149/2.F07103if.Search in Google Scholar
4. Lal, M. S., Lavanya, T., Ramaprabhu, S. An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite. Beilstein J. Nanotechnol. 2019, 10, 781–793. https://doi.org/10.3762/BJNANO.10.78.Search in Google Scholar
5. Patil, T. S., Gangawane, S. A., Takale, M. V. A review on Mn3O4 and its composite nano materials of different morphologies as an electrode material in supercapacitors. Int. J. Sci. Res. Sci. Technol. 2021, 8, 88–100. https://doi.org/10.32628/IJSRST.Search in Google Scholar
6. Ramezanpour, S., Sheikhshoaie, I., Khatamian, M. Synthesis, characterization and photocatalytic properties of V-doped Mn3O4 nanoparticles as a visible light-activated photocatalyst. J. Mol. Liq. 2017, 231, 64–71. https://doi.org/10.1016/j.molliq.2017.01.099.Search in Google Scholar
7. Acharyya, S. S., Ghosh, S., Sharma, S. K., Bal, R. Fabrication of Ag nanoparticles supported on one-dimensional (1D) Mn3O4 spinel nanorods for selective oxidation of cyclohexane at room temperature. New J. Chem. 2016, 40, 3812–3820. https://doi.org/10.1039/c5nj02571k.Search in Google Scholar
8. Bose, V. C., Biju, V. Optical, electrical and magnetic properties of nanostructured Mn3O4 synthesized through a facile chemical route. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 66, 24–321. https://doi.org/10.1016/j.physe.2014.09.020.Search in Google Scholar
9. El-Said, W. A., Alsulmi, A., Alshitari, W. Hydrothermal synthesis of Mn3O4 nanorods modified indium tin oxide electrode as an efficient nanocatalyst towards direct urea electrooxidation. PLoS One 2022, 17, e0272586. https://doi.org/10.1371/journal.pone.0272586.Search in Google Scholar PubMed PubMed Central
10. Wang, H., Zhao, J., Xie, D., Huang, H., Rao, P., Mao, J. Facile synthesis of nanosized Mn3O4 powder anodes for high capacity Lithium–Ion battery via flame spray pyrolysis. Front. Chem. 2022, 10, 1–7. https://doi.org/10.3389/fchem.2022.990548.Search in Google Scholar PubMed PubMed Central
11. Yin, X. T., Wu, S. S., Dastan, D., Nie, S., Liu, Y., Li, Z. G., Zhou, Y. W., Li, J., Faik, A., Shan, K., Shi, Z., Tarighat, M. A., Ma, X. G. Sensing selectivity of SnO2-Mn3O4 nanocomposite sensors for the detection of H2 and CO gases. Surface. Interfac. 2021, 25, 101190. https://doi.org/10.1016/j.surfin.2021.101190.Search in Google Scholar
12. Shunmugapriya, B., Rose, A., Maiyalagan, T., Vijayakumar, T. Effect of cobalt doping on the electrochemical performance of trimanganese tetraoxide. Nanotechnology 2020, 31, 285401. https://doi.org/10.1088/1361-6528/ab824e.Search in Google Scholar PubMed
13. Shaik, M. R., Syed, R., Adil, S. F., Kuniyil, M., Khan, M., Alqahtani, M. S., Shaik, J. P., Siddiqui, M. R. H., Al-Warthan, A., Sharaf, M. A. F., Abdelgawad, A., Awwad, E. M. Mn3O4 nanoparticles: synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J. Biol. Sci. 2021, 28, 1196–1202. https://doi.org/10.1016/j.sjbs.2020.11.087.Search in Google Scholar PubMed PubMed Central
14. Tian, Q., Wang, X., Huang, G., Guo, X. Nanostructured (Co, Mn)3O4 for high capacitive supercapacitor applications. Nanoscale Res. Lett. 2017, 12, 214. https://doi.org/10.1186/s11671-017-1977-0.Search in Google Scholar PubMed PubMed Central
15. Naiknaware, A. G., Chavan, J. U., Kaldate, S. H., Yadav, A. A. Studies on spray deposited Ni doped Mn3O4 electrodes for supercapacitor applications. J. Alloys Compd. 2019, 774, 787–794. https://doi.org/10.1016/j.jallcom.2018.10.001.Search in Google Scholar
16. Chandar, N. R., Agilan, S., Muthukumarasamy, N., Thangarasu, R. An enhanced photocatalytic performance based on MoO3 and zn doped MoO3 Nano structures. J. Ovonic Res. 2019, 15, 287–289.Search in Google Scholar
17. Najim, A. A., Gbashi, K. R., Salih, A. T. Synthesis and characterization of nanocrystalline Ba-doped Mn3O4 Hausmannite thin films for optoelectronic applications. Int. J. Nanosci. 2021, 20, 1–8. https://doi.org/10.1142/S0219581X2150040X.Search in Google Scholar
18. Chouchaine, A., Trifi, I. M., Trifi, B., Ghodbane, O., Dhaouadi, H., Touati, F., Amdouni, N., Kouass, S. EVALUATION 2022, 3, 1–5.Search in Google Scholar
19. Wang, L. H., Ren, L. L., Qin, Y. F., Chen, J., Chen, H. Y., Wang, K., Liu, H. J., Huang, Z., Li, Q. Preparation of Mn3O4 nanoparticles via precipitation in presence of CTAB molecules and its application as anode material for Lithium ion batteries. Int. J. Electrochem. Sci. 2022, 17, 220221. https://doi.org/10.20964/2022.02.21.Search in Google Scholar
20. Bose, V. C., Sugathan, N., Biju, V. Novel sol–gel method for low temperature synthesis of nanostructured Mn3O4: structure, cation valence states, optical and electrical properties. J. Cryst. Growth 2021, 555, 125961. https://doi.org/10.1016/j.jcrysgro.2020.125961.Search in Google Scholar
21. Diba, M., Fam, D. W. H., Boccaccini, A. R., Shaffer, M. S. P. Electrophoretic deposition of graphene-related materials: a review of the fundamentals. Prog. Mater. Sci. 2016, 82, 83–117. https://doi.org/10.1016/j.pmatsci.2016.03.002.Search in Google Scholar
22. Besra, L., Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001.Search in Google Scholar
23. Ma, Y., Han, J., Wang, M., Chen, X., Jia, S. Electrophoretic deposition of graphene-based materials: a review of materials and their applications. J. Mater. 2018, 4, 108–120. https://doi.org/10.1016/j.jmat.2018.02.004.Search in Google Scholar
24. Zhu, H., Geng, S., Chen, G., Wang, F. Effect of current density on deposition of Ni-Mn3O4 composite coating and its high temperature behavior. J. Electrochem. Soc. 2020, 167, 041506. https://doi.org/10.1149/1945-7111/ab754c.Search in Google Scholar
25. Cabanas-Polo, S., Boccaccini, A. R. Electrophoretic deposition of nanoscale TiO2: technology and applications. J. Eur. Ceram. Soc. 2016, 36, 265–283. https://doi.org/10.1016/j.jeurceramsoc.2015.05.030.Search in Google Scholar
26. Li, T., Xue, B., Wang, B., Guo, G., Han, D., Yan, Y., Dong, A. Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity. J. Am. Chem. Soc. 2017, 139, 12133–12136. https://doi.org/10.1021/jacs.7b06587.Search in Google Scholar PubMed
27. Apelt, S., Zhang, Y., Zhu, J. H., Leyens, C. Electrodeposition of Co-Mn3O4 composite coatings. Surf. Coat. Technol. 2015, 280, 208–215. https://doi.org/10.1016/j.surfcoat.2015.09.011.Search in Google Scholar
28. Lv, Y., Geng, S., Shi, Z. Effect of pH of the galvanic bath on electrodeposition of Cu-Mn3O4 composite coatings. Mater. Chem. Phys. 2017, 189, 176–182. https://doi.org/10.1016/j.matchemphys.2016.12.052.Search in Google Scholar
29. Shrestha, N. K., Hamal, D. B., Saji, T. Composite plating of Ni–P–Al2O3 in two steps and its anti-wear performance. Surf. Coat. Technol. 2004, 183, 247–253. https://doi.org/10.1016/j.surfcoat.2003.08.085.Search in Google Scholar
30. Feng, J., Wang, X., Tian, Y., Bu, Y., Luo, C., Sun, M. Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction. J. Chromatogr. A 2017, 1517, 209–214. https://doi.org/10.1016/j.chroma.2017.07.086.Search in Google Scholar PubMed
31. Marcin Behunová, D., Gallios, G., Girman, V., Kolev, H., Kaňuchová, M., Dolinská, S., Václavíková, M. Electrophoretic deposition of graphene oxide on stainless steel substrate. Nanomaterials 2021, 11, 1779. https://doi.org/10.3390/nano11071779.Search in Google Scholar PubMed PubMed Central
32. Yan, B. L., Jun, D., Wang, J., Yang, T., Mao, X. H. A simplified electrophoretic deposition route for sandwiched structure-based Mn3O4/G composite electrodes as high-capacity anodes for lithium-ion batteries. J. Alloys Compd. 2022, 905, 164121. https://doi.org/10.1016/j.jallcom.2022.164121.Search in Google Scholar
33. Amara, M. A., Larbi, T., Labidi, A., Karyaoui, M., Ouni, B., Amlouk, M. Microstructural, optical and ethanol sensing properties of sprayed Li-doped Mn3O4 thin films. Mater. Res. Bull. 2016, 75, 217–223. https://doi.org/10.1016/j.materresbull.2015.11.042.Search in Google Scholar
34. Sheikhshoaie, I., Ramezanpour, S., Khatamian, M. Synthesis and characterization of thallium doped Mn3O4 as superior sunlight photocatalysts. J. Mol. Liq. 2017, 238, 248–253. https://doi.org/10.1016/j.molliq.2017.04.088.Search in Google Scholar
35. Bernard, M., Hugot-Le Goff, A., Thi, B. V., Cordoba de Torresi, S. Electrochromic reactions in manganese oxides: I . Raman analysis. J. Electrochem. Soc. 1993, 140, 3065–3070. https://doi.org/10.1149/1.2220986.Search in Google Scholar
36. Shaik, D. P. M. D., Rosaiah, P., Hussain, O. M. Supercapacitive properties of Mn3O4 nanoparticles synthesized by hydrothermal method. Mater. Today: Proc. 2016, 3, 64–73. https://doi.org/10.1016/j.matpr.2016.01.122.Search in Google Scholar
37. He, T., Yao, J. Photochromism of molybdenum oxide. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 125–143. https://doi.org/10.1016/S1389-5567(03)00025-X.Search in Google Scholar
38. Baby, J. N., Sriram, B., Wang, S. F., George, M., Govindasamy, M., Joseph, X. B. Deep eutectic solvent-based manganese molybdate nanosheets for sensitive and simultaneous detection of human lethal compounds: comparing the electrochemical performances of M-molybdate (M = Mg, Fe, and Mn) electrocatalysts. Nanoscale 2020, 12, 19719–19731. https://doi.org/10.1039/d0nr05533f.Search in Google Scholar PubMed
39. Meguerdichian, A. G., Shirazi-Amin, A., Moharreri, E., Achola, L. A., Murphy, S. C., Macharia, J., Zhong, W., Jafari, T., Suib, S. L. Synthesis of large mesoporous-macroporous and high pore volume, mixed crystallographic phase manganese oxide, Mn2O3/Mn3O4 sponge. Inorg. Chem. 2018, 57, 6946–6956. https://doi.org/10.1021/acs.inorgchem.8b00613.Search in Google Scholar PubMed
40. Saranya, P. E., Selladurai, S. Efficient electrochemical performance of ZnMn2O4 nanoparticles with rGO nanosheets for electrodes in supercapacitor applications. J. Mater. Sci.: Mater. Electron. 2018, 29, 3326–3339. https://doi.org/10.1007/s10854-017-8268-5.Search in Google Scholar
41. Ji, W., Shen, R., Yang, R., Yu, G., Guo, X., Peng, L., Ding, W. Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 699–704. https://doi.org/10.1039/c3ta13708b.Search in Google Scholar
42. Shivakumara, S., Penki, T. R., Munichandraiah, N. Synthesis and characterization of porous flowerlike Fe2O3 nanostructures for supercapacitor application. ECS Electrochem. Lett. 2013, 2, A60–A62. https://doi.org/10.1149/2.002307eel.Search in Google Scholar
43. Pang, H., Deng, J., Du, J., Li, S., Li, J., Ma, Y., Zhang, J., Chen, J. Porous nanocubic Mn3O4-Co3O4 composites and their application as electrochemical supercapacitors. Dalton Trans. 2012, 41, 10175–10181. https://doi.org/10.1039/c2dt31012k.Search in Google Scholar PubMed
44. Xu, G., Shi, J., Dong, W., Wen, Y., Min, X., Tang, A. One-pot synthesis of a Ni–Mn3O4 nanocomposite for supercapacitors. J. Alloys Compd. 2015, 630, 266–271. https://doi.org/10.1016/j.jallcom.2015.01.067.Search in Google Scholar
45. Dong, R., Ye, Q., Kuang, L., Lu, X., Zhang, Y., Zhang, X., Tan, G., Wen, Y., Wang, F. Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl. Mater. Interfaces 2013, 5, 9508–9516. https://doi.org/10.1021/am402257y.Search in Google Scholar PubMed
46. Wang, B., Yu, J., Lu, Q., Xiao, Z., Ma, X., Feng, Y. Preparation of Mn3O4 microspheres via glow discharge electrolysis plasma as a high-capacitance supercapacitor electrode material. J. Alloys Compd. 2022, 926, 166775. https://doi.org/10.1016/j.jallcom.2022.166775.Search in Google Scholar
47. Rudra, S., Deka, N., Nayak, A. K., Pradhan, M., Dutta, G. K. Facile hydrothermal synthesis of Au-Mn3O4 decorated graphene oxide nanocomposites for solid-state supercapacitor. J. Energy Storage 2022, 50, 104615. https://doi.org/10.1016/j.est.2022.104615.Search in Google Scholar
48. Yewale, M. A., Jadhavar, A. A., Kadam, R. A., Velhal, N. B., Nakate, U. T., Teli, A. M., Shin, J. C., Nguyen, L. N., Shin, D. K., Kaushik, N. K. Hydrothermal synthesis of manganese oxide (Mn3O4) with granule-like morphology for supercapacitor application. Ceram. Int. 2022, 48, 29429–29437. https://doi.org/10.1016/j.ceramint.2022.06.144.Search in Google Scholar
49. Zhang, W., Guo, X., Zhao, J., Zheng, Y., Xie, H., Zhang, Z., Wang, S., Xu, Q., Fu, Q., Zhang, T. High performance flower-like Mn3O4/rGO composite for supercapacitor applications. J. Electroanal. Chem. 2022, 910, 116170. https://doi.org/10.1016/j.jelechem.2022.116170.Search in Google Scholar
50. Li, W., Xu, A., Zhang, Y., Yu, Y., Liu, Z., Qin, Y. Metal-organic framework-derived Mn3O4 nanostructure on reduced graphene oxide as high-performance supercapacitor electrodes. J. Alloys Compd. 2022, 897. https://doi.org/10.1016/j.jallcom.2021.162640.Search in Google Scholar
51. He, X., Cheng, Y., Qi, H., Zhang, Y. One-step hydrothermal synthesis of bimetallic oxides (NiO@Mn3O4) supported on rGO: a highly efficient electrode material for supercapacitors. Electrochim. Acta 2021, 388, 138609. https://doi.org/10.1016/j.electacta.2021.138609.Search in Google Scholar
52. Jiang, M., Liu, Z., Hu, J., Liu, Y., Luo, Y., Lai, X., Xu, T. Facile electrodeposition of Mn3O4 nanoparticles on wood-derived porous carbon for high-performance asymmetric supercapacitor. Diamond Relat. Mater. 2021, 118, 108506. https://doi.org/10.1016/j.diamond.2021.108506.Search in Google Scholar
53. Abirami, R., Kabilan, R., Nagaraju, P., Hariharan, V., Thennarasu, S. Enhanced electrochemical performance of Mn3O4/Multiwalled carbon nanotube nanocomposite for supercapacitor applications. J. Electron. Mater. 2021, 50, 6467–6474. https://doi.org/10.1007/s11664-021-09177-z.Search in Google Scholar
54. Arshad, F., Parveen, N., Ansari, S. A., Khan, J. A., Sk, M. P. Microwave-mediated synthesis of tetragonal Mn3O4 nanostructure for supercapacitor application. Environ. Sci. Pollut. Res. 2022, 30, 71464–71471. https://doi.org/10.1007/s11356-022-22626-4.Search in Google Scholar PubMed
55. Zhu, J., Wu, Q., Li, J. Review and prospect of Mn3O4-based composite materials for supercapacitor electrodes. ChemistrySelect 2020, 5, 10407–10423. https://doi.org/10.1002/slct.202002544.Search in Google Scholar
56. Zhu, X., Wei, Z., Ma, L., Liang, J., Zhang, X. Synthesis and electrochemical properties of Co-doped ZnMn2O4 hollow nanospheres. Bull. Mater. Sci. 2020, 43, 4. https://doi.org/10.1007/s12034-019-1970-6.Search in Google Scholar
57. Ates, M., Serin, M. A., Ekmen, I., Ertas, Y. N. Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 2015, 72, 2573–2589. https://doi.org/10.1007/s00289-015-1422-4.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Review
- Accessing forbidden phases
- Original Papers
- Effect of oleic acid on morphologies of BaTi5O11 nanocrystals synthesized by hydrothermal method
- Fast and facile pH tailored green synthesized ZnO photocatalyst by biogenic reduction using water extract of Averrhoa bilimbi (L) fruit
- Rice husk-based cellulose nanocrystal/poly(vinyl alcohol) composite film for the removal of Cu (II) cation from aqueous solution
- Gelatin-based forsterite–hydroxyapatite hybrid coating on Ti6Al4V to improve its biocompatibility and corrosion resistance
- Enhanced supercapacitive performance of electrophoretically deposited nanostructured molybdenum-doped Mn3O4 thin films
- Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
- Enhancing the tensile performance of Al/Mg alloy dissimilar friction stir welded joints by reducing brittle intermetallic compounds
- News
- DGM – Deutsche Gesellschaft für Materialkunde