The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
-
Ali Roshani
, Mehdi Naderi
Abstract
In this paper, for sintering silicon carbide nanopowders via the spark plasma sintering method, nano-and micro-sized alumina sintering aids were used separately at 3 vol.%, 5 vol.%, and 7 vol.%. The sintering process was undertaken at 1900 °C for 10 min. To investigate some mechanical and physical properties of the resulting samples, density was obtained via the Archimedean method, and hardness was taken by the Vickers indenter method. The microstructure of the samples was examined through scanning electron microscopy. The results indicated that in the samples containing nano-alumina, the largest percentage of density and hardness was related to the sample containing 5 vol.% nano-alumina as a sintering aid and were obtained as 99% of theoretical density and 31.3 GPa, respectively. For the samples containing micro-alumina, the highest percentage of density and hardness was related to the sample containing 7 vol.% micro-alumina and obtained 93% of theoretical density and 20.1 GPa, respectively. By investigating the fractured surfaces of the samples and via the linear intercept method, the largest mean grain size was associated with the densest sample at 3.7 µm.
Acknowledgements
This research was conducted under the financial support of the faculty of materials engineering at Malek Ashtar University of technology.
-
Author contribution: All authors have contributed to Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, and Project administration.
-
Research funding: The authors have thanked MUT University for the financial support of this work.
-
Conflict of interest statement: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Availability of data and materials: The data that support the findings of this study are available from the author upon reasonable request.
References
1. Ohji, T., Singh, M., Eds. Engineered Ceramics: Current Status and Future Prospects; Willey Publication: United State of America, 2016.10.1002/9781119100430Search in Google Scholar
2. Gerhardt, R. Properties and Applications of Silicon Carbide; BoD–Books on Demand, InTech publication: Rijeka, Croatia, 2011.10.5772/615Search in Google Scholar
3. Raman, V. B. O. P., Bahl, O. P., Dhawan, U. J. Mater. Sci. 1995, 30, 2686–2693. https://doi.org/10.1007/BF00362153.Search in Google Scholar
4. Lin, B. W., Imai, M., Yano, T., Iseki, T. J. Am. Ceram. Soc. 1986, 69, 67–68. https://doi.org/10.1111/j.1151-2916.1986.tb04753.x.Search in Google Scholar
5. Jihong, S., Jingkun, G., Dongliang, J. Ceram. Int. 1993, 19, 347–351. https://doi.org/10.1016/0272-8842(93)90048-V.Search in Google Scholar
6. Munir, Z. A., Quach, D. V., Ohyanagi, M. J. Am. Ceram. Soc. 2011, 94, 1–19. https://doi.org/10.1016/0272-8842(93)90048-V.Search in Google Scholar
7. Yoshida, H., Morita, K., Kim, B. N., Hiraga, K., Kodo, M., Soga, K., Yamamoto, T. J. Am. Ceram. Soc. 2008, 91, 1707–1710. https://doi.org/10.1111/j.1551-2916.2008.02337.x.Search in Google Scholar
8. Anselmi-Tamburini, U., Garay, J. E., Munir, Z. A. Mater. Sci. Eng. A 2005, 407, 24–30. https://doi.org/10.1016/j.msea.2005.06.066.Search in Google Scholar
9. Raju, K., Yoon, D. H. Ceram. Int. 2016, 42, 17947–17962. https://doi.org/10.1016/j.ceramint.2016.09.022.Search in Google Scholar
10. Unlu, M. D., Goller, G., Yucel, O., Sahin, F. C. J. Acta Phys. A 2014, 125, 257–259. https://doi.org/10.12693/APhysPolA.125.257.Search in Google Scholar
11. Tamari, N., Tanaka, T., Tanaka, K., Kondoh, I., Kawahara, M., Tokita, M. J. Ceram. Soc. Jpn. 1995, 103, 740–742. https://doi.org/10.2109/jcersj.103.740.Search in Google Scholar
12. Maitre, A., Vande Put, A., Laval, J. P., Valette, S., Trolliard, G. J. Eur. Ceram. Soc. 2008, 28, 1881–1890. https://doi.org/10.1016/j.jeurceramsoc.2008.01.002.Search in Google Scholar
13. Merkus, H. G. Particle Size Measurements: Fundamentals, Practice, Quality; Springer Science & Business Media: Netherlan, Vol. 17, 2009.Search in Google Scholar
14. Raya, I., Chupradit, S., Kadhim, M., Mahmoud, M. Z., Jalil, A. T., Surendar, A., Ghafe, S. T., Mustafa, Y. F., Bochvar, A. N. Chin. Phys. B 2021, 31, 016401. https://doi.org/10.1088/1674-1056/ac3655.Search in Google Scholar
15. Ibrahim, A., Magliulo, N., Groben, J., Padilla, A., Akbik, F., Hamid, Z. A. Funct. Biomater. 2020, 11, 85. https://doi.org/10.3390/jfb11040085.Search in Google Scholar PubMed PubMed Central
16. Mendelson, L. I. J. Am. Ceram. Soc. 1969, 52, 443–446. https://doi.org/10.1111/j.1151-2916.1969.tb11975.x.Search in Google Scholar
17. Najafabadi, A. H., Mozaffarinia, R., Rahimi, H., Razavi, R. S., Paimozd, E. Surf. Eng. 2013, 29, 249–254. https://doi.org/10.1179/1743294412Y.0000000080.Search in Google Scholar
18. Wang, Z., Qiang, H., Wang, J., Duan, L. Propellants, Explos. Pyrotech. 2022, 47, e202200046. https://doi.org/10.1002/prep.202200046.Search in Google Scholar
19. Xin, T., Tang, S., Ji, F., Cui, L., He, B., Lin, X., Tian, X., Hou, H., Zhao, Y., Ferry, M. Acta Mater 2022, 239, 118248. https://doi.org/10.1016/j.actamat.2022.118248.Search in Google Scholar
20. Zhang, Z., Yang, F., Zhang, H., Zhang, T., Wang, H., Xu, Y., Ma, Q. Mater. Char. 2021, 171, 110732. https://doi.org/10.1016/j.matchar.2020.110732.Search in Google Scholar
21. Wang, N., Zhao, R., Zhang, L., Guan, X. Microporous Mesoporous Mater. 2022, 345, 112248. https://doi.org/10.1016/j.micromeso.2022.112248.Search in Google Scholar
22. Liu, X., Liu, J., Yang, H., Huang, B., Zeng, G. Appl. Opt. 2022, 61, 6752–6760. https://doi.org/10.1364/AO.465640.Search in Google Scholar PubMed
23. Zhang, X., Sun, X., Lv, T., Weng, L., Chi, M., ShiZhang, J. S. J. Mater. Sci. Mater. Electron. 2020, 31, 13344–13351. https://doi.org/10.1007/s10854-020-03888-5.Search in Google Scholar
24. Hao, W., Xie, J. J. Electrochem. Energy Convers. Storage 2021, 18, 020909. https://doi.org/10.1115/1.4049238.Search in Google Scholar
25. Chen, L., Zhao, Y. Prog. Mater. Sci. 2022, 124, 100868. https://doi.org/10.1016/j.pmatsci.2021.100868.Search in Google Scholar
26. Lv, B., Wang, S., Xu, T., Guo, F. J. Magnesium Alloys 2021, 9, 840–852. https://doi.org/10.1016/j.jma.2020.06.018.Search in Google Scholar
27. Fan, X., Wei, G., Lin, X., Wang, X., Si, Z., Zhang, X., Zhao, W., Mangin, S., Fullerton, E., Jiang, L. Matter 2020, 2, 1582–1593. https://doi.org/10.1016/j.matt.2020.04.001.Search in Google Scholar
28. Liu, C., Ying, P. Chin. Phys. B 2022, 31, 26201. https://doi.org/10.1088/1674-1056/ac0cd2.Search in Google Scholar
29. Han, M., He, H., Kong, W., Dong, K., Wang, B., Yan, X., Ning, L., Wang, X. Fibers Polym. 2022, 23, 1947–1955. https://doi.org/10.1007/s12221-022-4786-8.Search in Google Scholar
30. Kekelidze, N., Tavadze, G., Khutsishvili, E., Gabrichidze, L., Mikaberidze, G. Eur. Chem. Bull. 2016, 5, 376–379.Search in Google Scholar
31. Aslanova, F. Eng. Technol. 2020, 29, 25–33. https://doi.org/10.24200/jrset.vol8iss1pp25-33.Search in Google Scholar
32. Vessally, E., Musavi, M., Poor Heravi, M. Iran. J. Chem. Chem. Eng. 2021, 40, 1720–1736. https://doi.org/10.30492/ijcce.2022.532176.4794.Search in Google Scholar
33. Gharekhani, F., Ardjmand, M., Vaziri, A. Iran. J. Chem. Chem. Eng. 2021, 40, 1304–1314. https://doi.org/10.30492/ijcce.2021.131778.4256.Search in Google Scholar
34. Hoseini, Z., Davoodnia, A., Khojastehnezhad, A., Pordel, M. Eurasian Chem. Commun. 2020, 2, 398–409. https://doi.org/10.33945/sami/ecc.2020.3.10.Search in Google Scholar
35. Ajormal, F., Moradnia, F., Fardood, S. T., Ramazani, A. J. Chem. Rev. 2020, 2, 90–102. https://doi.org/10.33945/sami/jcr.2020.2.2.Search in Google Scholar
36. Chupradit, S., Jalil, A. T., Enina, Y., Neganov, D. A., Alhassan, M. S., Aravindhan, S., Davarpanah, A. J. Nanomater. 2021, 2021, 3250058. https://doi.org/10.1155/2021/3250058.Search in Google Scholar
37. Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Shewael, I. H., Valiev, G. H., Kianfar, E. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. https://doi.org/10.1155/2021/5102014.Search in Google Scholar
38. Peng, J., Xu, C., Dai, B., Sun, L., Feng, J., Huang, Q. Int. J. GeoMech. 2022, 22, 4022178. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529.Search in Google Scholar
39. Zhu, Q., Chen, J., Gou, G., Chen, H., Li, P. J. Mater. Process. Technol. 2017, 246, 267–275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.Search in Google Scholar
40. Jalil, A. T., Dilfy, S. H., Meza, S. O., Aravindhan, S., Kadhim, M. M., Aljeboree, A. M. J. Nanostruct. 2021, 1, 333–346. https://doi.org/10.22052/JNS.2021.02.014.Search in Google Scholar
41. Achem, K., Jasim, S. A., Al-Gazally, M. E., Riadi, Y., Yasin, G., Jalil, A.T., Khalaji, A. D., Saleh, M. M., Fenjan, M. N., Mustafa, Y. F. J. Chin. Chem. Soc. 2022, 69, 512–521. https://doi.org/10.1002/jccs.202100507.Search in Google Scholar
42. Bokov, D. O., Jalil, A. T., Alsultany, F. H., Mahmoud, M. Z., Suksatan, W., Chupradit, S., Kheirollahi, P. D., Nezhad, P. D. K. Mol. Simulat. 2022, 48, 1–10. https://doi.org/10.1080/08927022.2021.2025234.Search in Google Scholar
43. Hu, X., Derakhshanfard, A. H., Khalid, I., Jalil, A. T., Opulencia, M. J. C., Dehkordi, R. B., Toghraie, D., Hekmatifar, M., Sabetvand, R. J. Taiwan Inst. Chem. Eng. 2022, 135, 104396. https://doi.org/10.1016/j.jtice.2022.104396.Search in Google Scholar
44. Sadeghi, M., Siavoshani, A. Y., Bazargani, M., Jalil, A. T., Ramezani, M., Heravi, M. P. Monatsh. Chem. 2022, 153, 427–434. https://doi.org/10.1007/s00706-022-02926-8.Search in Google Scholar
45. Sivaraman, R., Patra, I., Opulencia, M. J. C., Sagban, R., Sharma, H., Jalil, A. T., Ebadi, G. J. Electroanal. Chem. 2022, 917, 116413. https://doi.org/10.1016/j.jelechem.2022.116413.Search in Google Scholar
46. Anzum, R., Alawamleh, H. S. K., Bokov, D. O., Jalil, A. T., Hoi, H. T., Abdelbasset, W. K., Thoi, N. T., Widjaja, G., Kurochkin, A. Food Sci. Technol. 2022, 42, e80721-1–80721-7. https://doi.org/10.1590/fst.80721.Search in Google Scholar
47. Saleh, R. O., Bokov, D. O., Fenjan, M. N., Abdelbasset, W. K., Altimari Jalil, U. S. A. T., Cao, Y., Thangavelu, L., Suksatan, W. J. Mol. Liq. 2022, 352, 118676. https://doi.org/10.1016/j.molliq.2022.118676.Search in Google Scholar
48. Liu, B., Khalid, I., Patra, I., Kuzichkin, O. R., Sivaraman, R., Jalil, A. T., Hekmatifar, M., Fadhil Smaisim, G., Sh, . Majdi H. J. Mol. Liq. 2022, 364, 119925. https://doi.org/10.1016/j.molliq.2022.119925.Search in Google Scholar
49. Jasim, S. A., Hadi, J. M., Opulencia, M. J. C., Karim, Y. S., Mahdi, A. B., Kadhim, M. M., Falih, K. T., Jalil, A. T., Mustafa, Y. F. J. Alloys Compd. 2022, 917, 165404. https://doi.org/10.1016/j.jallcom.2022.165404.Search in Google Scholar
50. Kadhim, M. M., Sead, F. F., Jalil, A. T., Taban, T. Z., Rheima, A. M., Almashhadani, H. A., Hamel, S. Monatsh. Chem. 2022, 153, 589–596. https://doi.org/10.1007/s00706-022-02952-6.Search in Google Scholar
51. Jasim, S. A., Hadi, J. M., Jalil, A. T., Opulencia, M. J. C., Hammid, A. T., Tohidimoghadam, M., Manesh, M. M. Front. Chem. 2022, 10, 868794. https://doi.org/10.3389/fchem.2022.868794.Search in Google Scholar PubMed PubMed Central
52. Zhao, G., Hooman, M., Yarigarravesh, M., Algarni, M., Opulencia, M. J. C., Alsaikhan, F., Jalil, A. T., Mohamed, A., AboRas, K. M., Rahman, M. L., Sarjadi, M. S. Arab. J. Chem. 2022, 15, 104115. https://doi.org/10.1016/j.arabjc.2022.104115.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Hydrogen resistance and trapping behaviour of a cold-drawn ferritic–pearlitic steel wire
- Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire
- The effect of the amount and size of alumina sintering aid particles on some mechanical properties and microstructure of silicon carbide bulky pieces via spark plasma sintering
- Effect of tremolite on the mechanical properties and thermal shock resistance of Al2O3 composites fabricated by temperature gradient spark plasma sintering
- Isothermal section of the Ti–Mn–Si ternary system at 600 °C
- NanoCeO2/conducting polymer based composite electrodes for high performance supercapacitor
- The antibacterial and cytocompatibility of the polyurethane nanofibrous scaffold containing curcumin for wound healing applications
- News
- DGM – Deutsche Gesellschaft für Materialkunde