Abstract
In this paper, a nickel complex with the general formula [Ni(HST)(OAc)] (HST: 1-salicylaldehydethiosemicarbazone, OAc: acetate) was subjected to thermal decomposition to produce nanoparticles at three different temperatures. The semiconductor nanoparticles have a particle size of 22.18 nm and a band gap of 2.68 eV. Furthermore, it was observed that the nanoparticles exhibiting a zeta-potential value of −26.1 are stable in colloidal media. The produced nanoparticles have the potential to be used as wastewater treatment agents under optimized conditions, as evidenced by the photocatalytic activity on methylene blue degradation with a 69.30% decomposition. Although all the synthesized compounds exhibit high antibacterial activity with low minimal inhibitory concentration values, the nanoparticles obtained by calcination at 400 °C had the highest activity, which is consistent with the literature.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Brodowska, K., Łodyga-Chruścińska, E. Chemik 2014, 68, 129. https://doi.org/10.34256/ioriip1982.Search in Google Scholar
2. Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B., De Fátima, Â. J. Adv. Res. 2011, 2, 1. https://doi.org/10.1016/j.jare.2010.05.004.Search in Google Scholar
3. Abu-Dief, A. M., Mohamed, I. M. A. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119. https://doi.org/10.1016/j.bjbas.2015.05.004.Search in Google Scholar PubMed PubMed Central
4. Mansour, A. M. RSC Adv. 2015, 5, 62052. https://doi.org/10.1039/c5ra12157d.Search in Google Scholar
5. Ismail, B. A., Nassar, D. A., Abd El–Wahab, Z. H., Ali, O. A. M. J. Mol. Struct. 2021, 1227, 129393. https://doi.org/10.1016/j.molstruc.2020.129393.Search in Google Scholar
6. Ebrahimipour, S. Y., Sheikhshoaie, I., Castro, J., Haase, W., Mohamadi, M., Foro, S., Sheikhshoaie, M., Esmaeili-Mahani, S. Inorg. Chim. Acta. 2015, 430, 245. https://doi.org/10.1016/j.ica.2015.03.016.Search in Google Scholar
7. Aazam, E. S., El-Said, W. A. Bioorg. Chem. 2014, 57, 5. https://doi.org/10.1016/j.bioorg.2014.07.004.Search in Google Scholar PubMed
8. Galini, M., Salehi, M., Kubicki, M., Bayat, M., Malekshah, R. E. J. Mol. Struct. 2020, 1207, 127715. https://doi.org/10.1016/j.molstruc.2020.127715.Search in Google Scholar
9. Shahraki, S., Heydari, A. Colloids Surf. B Biointerfaces 2017, 160, 564. https://doi.org/10.1016/j.colsurfb.2017.10.026.Search in Google Scholar PubMed
10. Khalaji, A. D., Grivani, G., Izadi, S. J. Therm. Anal. Calorim. 2016, 126, 1105. https://doi.org/10.1007/s10973-016-5698-x.Search in Google Scholar
11. Grivani, G., Vakili, M., Khalaji, A. D., Bruno, G., Rudbari, H. A., Taghavi, M., Tahmasebi, V. J. Mol. Struct. 2014, 1072, 77. https://doi.org/10.1016/j.molstruc.2014.04.059.Search in Google Scholar
12. Khansari, A., Enhessari, M., Salavati-Niasari, M. J. Cluster Sci. 2013, 24, 289. https://doi.org/10.1007/s10876-012-0521-8.Search in Google Scholar
13. Dehno Khalaji, A. J. Cluster Sci. 2013, 24, 189. https://doi.org/10.1007/s10876-012-0542-3.Search in Google Scholar
14. Shahsavani, E., Feizi, N., Khalaji, A. D. J. Ultrafine Grained Nanostruct. Mater. 2016, 49, 48. https://doi.org/10.7508/jufgnsm.2016.01.08.Search in Google Scholar
15. Khalaji, A. D., Nikookar, M., Fejfarova, K., Dusek, M. J. Mol. Struct. 2014, 1071, 6. https://doi.org/10.1016/j.molstruc.2014.04.043.10.1016/j.molstruc.2014.04.043Search in Google Scholar
16. Liu, M., Wang, X., Zhu, D., Li, L., Duan, H., Xu, Z., Wang, Z., Gan, L. Chem. Eng. J. 2017, 308, 240. https://doi.org/10.1016/j.cej.2016.09.061.Search in Google Scholar
17. Li, N., Li, Y., Li, Q., Zhao, Y., Sen Liu, C., Pang, H. J. Colloid Interface Sci. 2021, 581, 709. https://doi.org/10.1016/j.jcis.2020.07.134.Search in Google Scholar PubMed
18. Wang, M., Song, X., Dai, S., Xu, W., Yang, Q., Liu, J., Hu, C., Wei, D. Electrochim. Acta 2016, 214, 68. https://doi.org/10.1016/j.electacta.2016.08.036.Search in Google Scholar
19. Thi, T. V., Rai, A. K., Gim, J., Kim, J. J. Power Sources 2015, 292, 23. https://doi.org/10.1016/j.jpowsour.2015.05.029.Search in Google Scholar
20. Kumar Rai, A., Tuan Anh, L., Park, C. J., Kim, J. Ceram. Int. 2013, 39, 6611. https://doi.org/10.1016/j.ceramint.2013.01.097.Search in Google Scholar
21. Silva, V. D., Simões, T. A., Grilo, J. P. F., Medeiros, E. S., Macedo, D. A. J. Mater. Sci. 2020, 55, 6648. https://doi.org/10.1007/s10853-020-04481-1.Search in Google Scholar
22. Dan, W., Li, J., Tu, X., Jia, K. Adv. Mater. Res. 2013, 601, 21. https://doi.org/10.4028/www.scientific.net/amr.601.21.Search in Google Scholar
23. He, J., Schill, L., Yang, S., Riisager, A. ACS Sustain. Chem. Eng. 2018, 6, 17220. https://doi.org/10.1021/acssuschemeng.8b04579.Search in Google Scholar
24. Karthik, K., Shashank, M., Revathi, V., Tatarchuk, T. Mol. Cryst. Liq. Cryst. 2018, 673, 70. https://doi.org/10.1080/15421406.2019.1578495.Search in Google Scholar
25. Gupta, V. K., Fakhri, A., Agarwal, S., Ahmadi, E., Nejad, P. A. J. Photochem. Photobiol. B Biol. 2017, 174, 235. https://doi.org/10.1016/j.jphotobiol.2017.08.006.Search in Google Scholar PubMed
26. Ahmad Bhat, S., Zafar, F., Ullah Mirza, A., Hossain Mondal, A., Kareem, A., Haq, Q. M. R., Nishat, N. Arab. J. Chem. 2020, 13, 5724. https://doi.org/10.1016/j.arabjc.2020.04.011.Search in Google Scholar
27. Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Ramalingam, R. J., Al-Lohedan, H. A. J. Photochem. Photobiol. B Biol. 2018, 180, 39. https://doi.org/10.1016/j.jphotobiol.2018.01.023.Search in Google Scholar PubMed
28. Soltani, H., Pardakhty, A., Ahmadzadeh, S. J. Mol. Liq. 2016, 219, 63. https://doi.org/10.1016/j.molliq.2016.03.014.Search in Google Scholar
29. Shabani-Nooshabadi, M., Roostaee, M., Tahernejad-Javazmi, F. J. Mol. Liq. 2020, 317, 114687. https://doi.org/10.1016/j.molliq.2020.114687.Search in Google Scholar
30. Rezazadeh, Z., Soleimani, F., Mahmoudi, B., Nasseri, M. A., Kazemnejadi, M. Appl. Phys. A Mater. Sci. Process 2021, 127, 1. https://doi.org/10.1007/s00339-021-04927-6.Search in Google Scholar
31. Khalaji, A. D. J. Ultrafine Grained Nanostruct. Mater. 2015, 48, 1.Search in Google Scholar
32. Khalaji, A. D. Iran. J. Chem. Chem. Eng. 2016, 35, 17.Search in Google Scholar
33. Khalaji, A. D., Das, D., Matalobos, J. S., Gharib, F. Int. J. Bio-Inorg. Hybrid Nanomater. 2015, 4, 59.Search in Google Scholar
34. Samadi, S., Khalili, E., Allahgholi Ghasri, M. R. J. Electron. Mater. 2019, 48, 7836. https://doi.org/10.1007/s11664-019-07585-w.Search in Google Scholar
35. Motahari, F., Mozdianfard, M. R., Salavati-Niasari, M. Process Saf. Environ. Protect. 2015, 93, 282. https://doi.org/10.1016/j.psep.2014.06.006.Search in Google Scholar
36. Kitchamsetti, N., Ramteke, M. S., Rondiya, S. R., Mulani, S. R., Patil, M. S., Cross, R. W., Dzade, N. Y., Devan, R. S. J. Alloys Compd. 2021, 855, 157337. https://doi.org/10.1016/j.jallcom.2020.157337.Search in Google Scholar
37. Nassar, M. Y., Aly, H. M., Abdelrahman, E. A., Moustafa, M. E. J. Mol. Struct. 2017, 1143, 462. https://doi.org/10.1016/j.molstruc.2017.04.118.Search in Google Scholar
38. Alibrahim, K. A., Al-Fawzan, F. F., Refat, M. S. Rev. Roum. Chem. 2020, 65, 343. https://doi.org/10.33224/rrch.2020.65.4.03.Search in Google Scholar
39. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., Darroudi, M. Polyhedron 2020, 178, 114351. https://doi.org/10.1016/j.poly.2020.114351.Search in Google Scholar
40. Li, X., Peng, Y., Tian, T., Wang, D., Ren, X., Pu, X. J. Solid State Chem. 2021, 306, 122715. https://doi.org/10.1016/j.jssc.2021.122715.Search in Google Scholar
41. Kuba, A. S. M., Al-Shamari, A. M. J. Mater. Today Proc. 2022, 49, 2741. https://doi.org/10.1016/j.matpr.2021.09.256.Search in Google Scholar
42. Darbandi, M., Eynollahi, M., Badri, N., Mohajer, M. F., Li, Z. A. J. Alloys Compd. 2021, 889, 161706. https://doi.org/10.1016/j.jallcom.2021.161706.Search in Google Scholar
43. El-Shazly, R. M., Al-Hazmi, G. A. A., Ghazy, S. E., El-Shahawi, M. S., El-Asmy, A. A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 243. https://doi.org/10.1016/j.saa.2004.02.035.Search in Google Scholar PubMed
44. İmamoğlu, R., Koç, E., Kısa, D. Bioorg. Med. Chem. Lett. 2022, 65, 128722. https://doi.org/10.1016/j.bmcl.2022.128722.Search in Google Scholar PubMed
45. Kaplan, Ö., Gökşen Tosun, N., İmamoğlu, R., Türkekul, İ., Gökçe, İ., Özgür, A. J. Drug Deliv. Sci. Technol. 2022, 69, 103178. https://doi.org/10.1016/j.jddst.2022.103178.Search in Google Scholar
46. Korkmaz, N., Akar, K. B., İmamoğlu, R., Kısa, D., Karadağ, A. Appl. Organomet. Chem. 2021, 35, 1. https://doi.org/10.1002/aoc.6213.Search in Google Scholar
47. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed.; John Wiley & Sons: New York, 1978.Search in Google Scholar
48. El-Kemary, M., Nagy, N., El-Mehasseb, I. Mater. Sci. Semicond. Process. 2013, 16, 1747. https://doi.org/10.1016/j.mssp.2013.05.018.Search in Google Scholar
49. Hong, S. J., Mun, H. J., Kim, B. J., Kim, Y. S. Micromachines 2021, 12, 1. https://doi.org/10.3390/mi12101168.Search in Google Scholar PubMed PubMed Central
50. Kawasaki, S. I., Sue, K., Ookawara, R., Wakashima, Y., Suzuki, A., Hakuta, Y., Arai, K. J. Supercrit. Fluids 2010, 54, 96. https://doi.org/10.1016/j.supflu.2010.03.001.Search in Google Scholar
51. Palanisamy, P., Raichur, A. M. Mater. Sci. Eng. C 2009, 29, 199. https://doi.org/10.1016/j.msec.2008.06.008.Search in Google Scholar
52. Zorkipli, N. N. M., Kaus, N. H. M., Mohamad, A. A. Procedia Chem. 2016, 19, 626. https://doi.org/10.1016/j.proche.2016.03.062.Search in Google Scholar
53. Davar, F., Fereshteh, Z., Salavati-Niasari, M. J. Alloys Compd. 2009, 476, 797. https://doi.org/10.1016/j.jallcom.2008.09.121.Search in Google Scholar
54. Selvakumar, R., Nirosha, B., Vairam, S., Premkumar, T., Govindarajan, S. Inorg. Chim. Acta. 2018, 482, 774. https://doi.org/10.1016/j.ica.2018.07.021.Search in Google Scholar
55. Chen, Z., Xu, A., Zhang, Y., Gu, N. Curr. Appl. Phys. 2010, 10, 967. https://doi.org/10.1016/j.cap.2009.11.083.Search in Google Scholar
56. García, A. B., Cuesta, A., Montes-Morán, M. A., Martínez-Alonso, A., Tascón, J. M. D. J. Colloid Interface Sci. 1997, 192, 363. https://doi.org/10.1006/jcis.1997.5007.Search in Google Scholar PubMed
57. Al-Zaqri, N., Umamakeshvari, K., Mohana, V., Muthuvel, A., Boshaala, A. J. Mater. Sci. Mater. Electron. 2022, 33, 11864–11880. https://doi.org/10.1007/s10854-022-08149-1.Search in Google Scholar
58. Pham, T. M. H., Vu, M. T., Cong, T. D., Nguyen, N. S., Doan, T. A., Truong, T. T., Nguyen, T. H. Bull. Mater. Sci. 2022, 45, 13. https://doi.org/10.1007/s12034-021-02584-2.Search in Google Scholar
59. Khairnar, S. D., Shrivastava, V. S. J. Taibah Univ. Sci. 2019, 13, 1108. https://doi.org/10.1080/16583655.2019.1686248.Search in Google Scholar
60. Abdel-Rahman, L. H., Abu-Dief, A. M., El-Khatib, R. M., Abdel-Fatah, S. M. Bioorg. Chem. 2016, 69, 140. https://doi.org/10.1016/j.bioorg.2016.10.009.Search in Google Scholar PubMed
61. Tohidiyan, Z., Sheikhshoaie, I., Khaleghi, M., Mague, J. T. J. Mol. Struct. 2017, 1134, 706. https://doi.org/10.1016/j.molstruc.2017.01.026.Search in Google Scholar
62. Farhadi, S., Roostaei-Zaniyani, Z. Polyhedron 2011, 30, 1244. https://doi.org/10.1016/j.poly.2011.01.028.Search in Google Scholar
63. Farhadi, S., Roostaei-Zaniyani, Z. Polyhedron 2011, 30, 971. https://doi.org/10.1016/j.poly.2010.12.044.Search in Google Scholar
64. Salavati-Niasari, M., Mir, N., Davar, F. J. Alloys Compd. 2010, 493, 163. https://doi.org/10.1016/j.jallcom.2009.11.153.Search in Google Scholar
65. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., Souto, E. B. Nanomaterials 2020, 10, 1. https://doi.org/10.3390/nano10020292.Search in Google Scholar PubMed PubMed Central
66. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., Christen, P. Biomolecules 2014, 4, 252. https://doi.org/10.3390/biom4010252.Search in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Modeling the band gap of spinel nano-ferrite material using a genetic algorithm based support vector regression computational method
- Influence of surfactant concentration on structural properties and corrosion behaviour of electrodeposited Ni–SiO2 nanocomposite coatings
- Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
- Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
- Synthesis and efficient electrocatalytic performance of Bi2O3/Dy2O3 nanoflakes
- Finite element assisted self-consistent simulations to capture texture heterogeneity during hot compression
- Improving mechanical properties of additive manufactured AZ31 by mechanical rolling
- News
- DGM – Deutsche Gesellschaft für Materialkunde