Home Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination
Article
Licensed
Unlicensed Requires Authentication

Synthesis of nickel oxide nanoparticles as an agent for antibacterial and wastewater remediation applications by calcination

  • Ayşegül Şenocak ORCID logo EMAIL logo , Rızvan İmamoğlu ORCID logo and Sefa Yılmaz ORCID logo
Published/Copyright: February 15, 2023
Become an author with De Gruyter Brill

Abstract

In this paper, a nickel complex with the general formula [Ni(HST)(OAc)] (HST: 1-salicylaldehydethiosemicarbazone, OAc: acetate) was subjected to thermal decomposition to produce nanoparticles at three different temperatures. The semiconductor nanoparticles have a particle size of 22.18 nm and a band gap of 2.68 eV. Furthermore, it was observed that the nanoparticles exhibiting a zeta-potential value of −26.1 are stable in colloidal media. The produced nanoparticles have the potential to be used as wastewater treatment agents under optimized conditions, as evidenced by the photocatalytic activity on methylene blue degradation with a 69.30% decomposition. Although all the synthesized compounds exhibit high antibacterial activity with low minimal inhibitory concentration values, the nanoparticles obtained by calcination at 400 °C had the highest activity, which is consistent with the literature.


Corresponding author: Ayşegül Şenocak, Department of Chemistry, Collage of Art and Science, Tokat Gaziosmanpaşa University, 60240, Tokat, Türkiye, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brodowska, K., Łodyga-Chruścińska, E. Chemik 2014, 68, 129. https://doi.org/10.34256/ioriip1982.Search in Google Scholar

2. Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B., De Fátima, Â. J. Adv. Res. 2011, 2, 1. https://doi.org/10.1016/j.jare.2010.05.004.Search in Google Scholar

3. Abu-Dief, A. M., Mohamed, I. M. A. Beni-Suef Univ. J. Basic Appl. Sci. 2015, 4, 119. https://doi.org/10.1016/j.bjbas.2015.05.004.Search in Google Scholar PubMed PubMed Central

4. Mansour, A. M. RSC Adv. 2015, 5, 62052. https://doi.org/10.1039/c5ra12157d.Search in Google Scholar

5. Ismail, B. A., Nassar, D. A., Abd El–Wahab, Z. H., Ali, O. A. M. J. Mol. Struct. 2021, 1227, 129393. https://doi.org/10.1016/j.molstruc.2020.129393.Search in Google Scholar

6. Ebrahimipour, S. Y., Sheikhshoaie, I., Castro, J., Haase, W., Mohamadi, M., Foro, S., Sheikhshoaie, M., Esmaeili-Mahani, S. Inorg. Chim. Acta. 2015, 430, 245. https://doi.org/10.1016/j.ica.2015.03.016.Search in Google Scholar

7. Aazam, E. S., El-Said, W. A. Bioorg. Chem. 2014, 57, 5. https://doi.org/10.1016/j.bioorg.2014.07.004.Search in Google Scholar PubMed

8. Galini, M., Salehi, M., Kubicki, M., Bayat, M., Malekshah, R. E. J. Mol. Struct. 2020, 1207, 127715. https://doi.org/10.1016/j.molstruc.2020.127715.Search in Google Scholar

9. Shahraki, S., Heydari, A. Colloids Surf. B Biointerfaces 2017, 160, 564. https://doi.org/10.1016/j.colsurfb.2017.10.026.Search in Google Scholar PubMed

10. Khalaji, A. D., Grivani, G., Izadi, S. J. Therm. Anal. Calorim. 2016, 126, 1105. https://doi.org/10.1007/s10973-016-5698-x.Search in Google Scholar

11. Grivani, G., Vakili, M., Khalaji, A. D., Bruno, G., Rudbari, H. A., Taghavi, M., Tahmasebi, V. J. Mol. Struct. 2014, 1072, 77. https://doi.org/10.1016/j.molstruc.2014.04.059.Search in Google Scholar

12. Khansari, A., Enhessari, M., Salavati-Niasari, M. J. Cluster Sci. 2013, 24, 289. https://doi.org/10.1007/s10876-012-0521-8.Search in Google Scholar

13. Dehno Khalaji, A. J. Cluster Sci. 2013, 24, 189. https://doi.org/10.1007/s10876-012-0542-3.Search in Google Scholar

14. Shahsavani, E., Feizi, N., Khalaji, A. D. J. Ultrafine Grained Nanostruct. Mater. 2016, 49, 48. https://doi.org/10.7508/jufgnsm.2016.01.08.Search in Google Scholar

15. Khalaji, A. D., Nikookar, M., Fejfarova, K., Dusek, M. J. Mol. Struct. 2014, 1071, 6. https://doi.org/10.1016/j.molstruc.2014.04.043.10.1016/j.molstruc.2014.04.043Search in Google Scholar

16. Liu, M., Wang, X., Zhu, D., Li, L., Duan, H., Xu, Z., Wang, Z., Gan, L. Chem. Eng. J. 2017, 308, 240. https://doi.org/10.1016/j.cej.2016.09.061.Search in Google Scholar

17. Li, N., Li, Y., Li, Q., Zhao, Y., Sen Liu, C., Pang, H. J. Colloid Interface Sci. 2021, 581, 709. https://doi.org/10.1016/j.jcis.2020.07.134.Search in Google Scholar PubMed

18. Wang, M., Song, X., Dai, S., Xu, W., Yang, Q., Liu, J., Hu, C., Wei, D. Electrochim. Acta 2016, 214, 68. https://doi.org/10.1016/j.electacta.2016.08.036.Search in Google Scholar

19. Thi, T. V., Rai, A. K., Gim, J., Kim, J. J. Power Sources 2015, 292, 23. https://doi.org/10.1016/j.jpowsour.2015.05.029.Search in Google Scholar

20. Kumar Rai, A., Tuan Anh, L., Park, C. J., Kim, J. Ceram. Int. 2013, 39, 6611. https://doi.org/10.1016/j.ceramint.2013.01.097.Search in Google Scholar

21. Silva, V. D., Simões, T. A., Grilo, J. P. F., Medeiros, E. S., Macedo, D. A. J. Mater. Sci. 2020, 55, 6648. https://doi.org/10.1007/s10853-020-04481-1.Search in Google Scholar

22. Dan, W., Li, J., Tu, X., Jia, K. Adv. Mater. Res. 2013, 601, 21. https://doi.org/10.4028/www.scientific.net/amr.601.21.Search in Google Scholar

23. He, J., Schill, L., Yang, S., Riisager, A. ACS Sustain. Chem. Eng. 2018, 6, 17220. https://doi.org/10.1021/acssuschemeng.8b04579.Search in Google Scholar

24. Karthik, K., Shashank, M., Revathi, V., Tatarchuk, T. Mol. Cryst. Liq. Cryst. 2018, 673, 70. https://doi.org/10.1080/15421406.2019.1578495.Search in Google Scholar

25. Gupta, V. K., Fakhri, A., Agarwal, S., Ahmadi, E., Nejad, P. A. J. Photochem. Photobiol. B Biol. 2017, 174, 235. https://doi.org/10.1016/j.jphotobiol.2017.08.006.Search in Google Scholar PubMed

26. Ahmad Bhat, S., Zafar, F., Ullah Mirza, A., Hossain Mondal, A., Kareem, A., Haq, Q. M. R., Nishat, N. Arab. J. Chem. 2020, 13, 5724. https://doi.org/10.1016/j.arabjc.2020.04.011.Search in Google Scholar

27. Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Ramalingam, R. J., Al-Lohedan, H. A. J. Photochem. Photobiol. B Biol. 2018, 180, 39. https://doi.org/10.1016/j.jphotobiol.2018.01.023.Search in Google Scholar PubMed

28. Soltani, H., Pardakhty, A., Ahmadzadeh, S. J. Mol. Liq. 2016, 219, 63. https://doi.org/10.1016/j.molliq.2016.03.014.Search in Google Scholar

29. Shabani-Nooshabadi, M., Roostaee, M., Tahernejad-Javazmi, F. J. Mol. Liq. 2020, 317, 114687. https://doi.org/10.1016/j.molliq.2020.114687.Search in Google Scholar

30. Rezazadeh, Z., Soleimani, F., Mahmoudi, B., Nasseri, M. A., Kazemnejadi, M. Appl. Phys. A Mater. Sci. Process 2021, 127, 1. https://doi.org/10.1007/s00339-021-04927-6.Search in Google Scholar

31. Khalaji, A. D. J. Ultrafine Grained Nanostruct. Mater. 2015, 48, 1.Search in Google Scholar

32. Khalaji, A. D. Iran. J. Chem. Chem. Eng. 2016, 35, 17.Search in Google Scholar

33. Khalaji, A. D., Das, D., Matalobos, J. S., Gharib, F. Int. J. Bio-Inorg. Hybrid Nanomater. 2015, 4, 59.Search in Google Scholar

34. Samadi, S., Khalili, E., Allahgholi Ghasri, M. R. J. Electron. Mater. 2019, 48, 7836. https://doi.org/10.1007/s11664-019-07585-w.Search in Google Scholar

35. Motahari, F., Mozdianfard, M. R., Salavati-Niasari, M. Process Saf. Environ. Protect. 2015, 93, 282. https://doi.org/10.1016/j.psep.2014.06.006.Search in Google Scholar

36. Kitchamsetti, N., Ramteke, M. S., Rondiya, S. R., Mulani, S. R., Patil, M. S., Cross, R. W., Dzade, N. Y., Devan, R. S. J. Alloys Compd. 2021, 855, 157337. https://doi.org/10.1016/j.jallcom.2020.157337.Search in Google Scholar

37. Nassar, M. Y., Aly, H. M., Abdelrahman, E. A., Moustafa, M. E. J. Mol. Struct. 2017, 1143, 462. https://doi.org/10.1016/j.molstruc.2017.04.118.Search in Google Scholar

38. Alibrahim, K. A., Al-Fawzan, F. F., Refat, M. S. Rev. Roum. Chem. 2020, 65, 343. https://doi.org/10.33224/rrch.2020.65.4.03.Search in Google Scholar

39. Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M., Darroudi, M. Polyhedron 2020, 178, 114351. https://doi.org/10.1016/j.poly.2020.114351.Search in Google Scholar

40. Li, X., Peng, Y., Tian, T., Wang, D., Ren, X., Pu, X. J. Solid State Chem. 2021, 306, 122715. https://doi.org/10.1016/j.jssc.2021.122715.Search in Google Scholar

41. Kuba, A. S. M., Al-Shamari, A. M. J. Mater. Today Proc. 2022, 49, 2741. https://doi.org/10.1016/j.matpr.2021.09.256.Search in Google Scholar

42. Darbandi, M., Eynollahi, M., Badri, N., Mohajer, M. F., Li, Z. A. J. Alloys Compd. 2021, 889, 161706. https://doi.org/10.1016/j.jallcom.2021.161706.Search in Google Scholar

43. El-Shazly, R. M., Al-Hazmi, G. A. A., Ghazy, S. E., El-Shahawi, M. S., El-Asmy, A. A. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 243. https://doi.org/10.1016/j.saa.2004.02.035.Search in Google Scholar PubMed

44. İmamoğlu, R., Koç, E., Kısa, D. Bioorg. Med. Chem. Lett. 2022, 65, 128722. https://doi.org/10.1016/j.bmcl.2022.128722.Search in Google Scholar PubMed

45. Kaplan, Ö., Gökşen Tosun, N., İmamoğlu, R., Türkekul, İ., Gökçe, İ., Özgür, A. J. Drug Deliv. Sci. Technol. 2022, 69, 103178. https://doi.org/10.1016/j.jddst.2022.103178.Search in Google Scholar

46. Korkmaz, N., Akar, K. B., İmamoğlu, R., Kısa, D., Karadağ, A. Appl. Organomet. Chem. 2021, 35, 1. https://doi.org/10.1002/aoc.6213.Search in Google Scholar

47. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed.; John Wiley & Sons: New York, 1978.Search in Google Scholar

48. El-Kemary, M., Nagy, N., El-Mehasseb, I. Mater. Sci. Semicond. Process. 2013, 16, 1747. https://doi.org/10.1016/j.mssp.2013.05.018.Search in Google Scholar

49. Hong, S. J., Mun, H. J., Kim, B. J., Kim, Y. S. Micromachines 2021, 12, 1. https://doi.org/10.3390/mi12101168.Search in Google Scholar PubMed PubMed Central

50. Kawasaki, S. I., Sue, K., Ookawara, R., Wakashima, Y., Suzuki, A., Hakuta, Y., Arai, K. J. Supercrit. Fluids 2010, 54, 96. https://doi.org/10.1016/j.supflu.2010.03.001.Search in Google Scholar

51. Palanisamy, P., Raichur, A. M. Mater. Sci. Eng. C 2009, 29, 199. https://doi.org/10.1016/j.msec.2008.06.008.Search in Google Scholar

52. Zorkipli, N. N. M., Kaus, N. H. M., Mohamad, A. A. Procedia Chem. 2016, 19, 626. https://doi.org/10.1016/j.proche.2016.03.062.Search in Google Scholar

53. Davar, F., Fereshteh, Z., Salavati-Niasari, M. J. Alloys Compd. 2009, 476, 797. https://doi.org/10.1016/j.jallcom.2008.09.121.Search in Google Scholar

54. Selvakumar, R., Nirosha, B., Vairam, S., Premkumar, T., Govindarajan, S. Inorg. Chim. Acta. 2018, 482, 774. https://doi.org/10.1016/j.ica.2018.07.021.Search in Google Scholar

55. Chen, Z., Xu, A., Zhang, Y., Gu, N. Curr. Appl. Phys. 2010, 10, 967. https://doi.org/10.1016/j.cap.2009.11.083.Search in Google Scholar

56. García, A. B., Cuesta, A., Montes-Morán, M. A., Martínez-Alonso, A., Tascón, J. M. D. J. Colloid Interface Sci. 1997, 192, 363. https://doi.org/10.1006/jcis.1997.5007.Search in Google Scholar PubMed

57. Al-Zaqri, N., Umamakeshvari, K., Mohana, V., Muthuvel, A., Boshaala, A. J. Mater. Sci. Mater. Electron. 2022, 33, 11864–11880. https://doi.org/10.1007/s10854-022-08149-1.Search in Google Scholar

58. Pham, T. M. H., Vu, M. T., Cong, T. D., Nguyen, N. S., Doan, T. A., Truong, T. T., Nguyen, T. H. Bull. Mater. Sci. 2022, 45, 13. https://doi.org/10.1007/s12034-021-02584-2.Search in Google Scholar

59. Khairnar, S. D., Shrivastava, V. S. J. Taibah Univ. Sci. 2019, 13, 1108. https://doi.org/10.1080/16583655.2019.1686248.Search in Google Scholar

60. Abdel-Rahman, L. H., Abu-Dief, A. M., El-Khatib, R. M., Abdel-Fatah, S. M. Bioorg. Chem. 2016, 69, 140. https://doi.org/10.1016/j.bioorg.2016.10.009.Search in Google Scholar PubMed

61. Tohidiyan, Z., Sheikhshoaie, I., Khaleghi, M., Mague, J. T. J. Mol. Struct. 2017, 1134, 706. https://doi.org/10.1016/j.molstruc.2017.01.026.Search in Google Scholar

62. Farhadi, S., Roostaei-Zaniyani, Z. Polyhedron 2011, 30, 1244. https://doi.org/10.1016/j.poly.2011.01.028.Search in Google Scholar

63. Farhadi, S., Roostaei-Zaniyani, Z. Polyhedron 2011, 30, 971. https://doi.org/10.1016/j.poly.2010.12.044.Search in Google Scholar

64. Salavati-Niasari, M., Mir, N., Davar, F. J. Alloys Compd. 2010, 493, 163. https://doi.org/10.1016/j.jallcom.2009.11.153.Search in Google Scholar

65. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A., Silva, A. M., Durazzo, A., Santini, A., Garcia, M. L., Souto, E. B. Nanomaterials 2020, 10, 1. https://doi.org/10.3390/nano10020292.Search in Google Scholar PubMed PubMed Central

66. Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., Christen, P. Biomolecules 2014, 4, 252. https://doi.org/10.3390/biom4010252.Search in Google Scholar PubMed PubMed Central

Received: 2022-06-02
Accepted: 2022-10-07
Published Online: 2023-02-15
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0260/html?lang=en
Scroll to top button