Home Hydrothermal synthesis of CoAl2O4 spinel: effect of reaction conditions on the characteristic and morphological features
Article
Licensed
Unlicensed Requires Authentication

Hydrothermal synthesis of CoAl2O4 spinel: effect of reaction conditions on the characteristic and morphological features

  • Fatma Tugce Senberber Dumanli ORCID logo EMAIL logo and Emek Moroydor Derun ORCID logo
Published/Copyright: November 3, 2022
Become an author with De Gruyter Brill

Abstract

The spinel form of cobalt aluminate (CoAl2O4) was synthesized by a hydrothermal method in moderate conditions. The synthesized phases were qualitatively and quantitively identified by means of different characterization techniques. The effects of reaction conditions of Co/Al ratio, pH, stirring time, reaction temperature, reaction time and capping agent addition on the color performance and morphology were studied. The capping agents of n-cetyl-n, n, n trimethylammonium bromide (CTAB), 2-pyrrolidinone (PVP), triethylamine (TEA) and oleic acid (OA) were used. The probable reaction mechanism can be explained with the steps of (i) formation of Co–Al–O complexes and (ii) conversion to Co-spinel. In the reaction mechanism, the addition of capping agents improved the conversion of complexes to Co-spinel. The characteristic band values were observed at 550, 595 and 650 nm in the ultraviolet–visible wavelength range, in UV analyses. The lowest b* and the highest BET surface area were determined in the TEA added sample with values of – 37.4 and 16.02, respectively. Layer shaped particles were obtained in CTAB added samples whereas the angled cubic particles were seen in the TEA and OA added samples. The smallest particles were observed in the use of PVP addition to spinel, and the particle size was around 100 nm. The experimental results proved that characteristic properties of prepared samples can be enhanced by the selection of a suitable capping agent.


Corresponding author: Fatma Tugce Senberber Dumanli, Department of Civil Engineering, Faculty of Engineering and Architecture, Nisantasi University, Neotech Campus, Tasyoncasi Street No. 1V-Y, 34210, Sarıyer, Istanbul, Turkey, E-mail:

  1. Author contributions: FTSD carried out the experiments and wrote the manuscript and EMD supervised the work and edited the manuscript.

  2. Research funding: This study was financially supported by The Scientific Research Projects Coordination Unit of Nişantaşı University project (BAP00009).

  3. Conflict of interest statement: Not applicable.

  4. Availability of data and material: The data that support the findings of this study are available on request from the authors.

References

1. Altaee, H., Alshamsi, H. A. J. Phys.: Conf. Ser. 2020, 1664, 1–17. https://doi.org/10.1088/1742-6596/1664/1/012074.Search in Google Scholar

2. Al-Bedairy, M. A., Habeeb Alshamsi, H. A., Eurasian J. Anal. Chem. 2018, 13, 1–7. https://doi.org/10.29333/ejac/101785.Search in Google Scholar

3. Aly, K. A., Khalil, N. M., Algamal, Y., Saleem, Q. A. M. J. Alloys Compd. 2016, 676, 606–612. https://doi.org/10.1016/j.jallcom.2016.03.213.Search in Google Scholar

4. Baseri, J., Naghizadeh, R., Rezaie, H. R., Golestanifard, F., Golmohammed, M. Int. J. Appl. Ceram. Technol. 2020, 17, 2709–2715. https://doi.org/10.1111/ijac.13598.Search in Google Scholar

5. Boudiaf, S., Nasrallah, N., Mellal, M., Belabed, C., Belhamdi, B., Meziani, D., Mehdi, B., Trari, M. Optik 2020, 219, 1–9. https://doi.org/10.1016/j.ijleo.2020.165038.Search in Google Scholar

6. Chueachot, R., Nakhowong, R. Mater. Lett. 2020, 259, 1–5. https://doi.org/10.1016/j.matlet.2019.126904.Search in Google Scholar

7. Chen, Z., Shi, E., Li, W., Zheng, Y., Wu, N., Zhong, W. J. Am. Ceram. Soc. 2002, 85, 2949–2955. https://doi.org/10.1111/j.1151-2916.2002.tb00561.x.Search in Google Scholar

8. Ghomi, J. S., Teymuri, R. Iran J. Catal. 2021, 11, 113–123.Search in Google Scholar

9. Guo, S., Tang, H., You, L., Zhang, H., Li, J., Zhou, K. Chin. Chem. Lett. 2021, 32, 2828–2832. https://doi.org/10.1016/j.cclet.2021.01.019.Search in Google Scholar

10. Tatarchuk, T., Danyliuk, N., Kotsyubynsky, V., Shumskaya, A., Kaniukov, E., Ghfar, A. A., Naushad, M., Shyichuk, A. Chemosphere 2022, 294, 1–11. https://doi.org/10.1016/j.chemosphere.2022.133565.Search in Google Scholar PubMed

11. Yan, S. R., Gholami, T., Amiri, O., Niasari, M. S., Seifi, S., Amiri, M., Sabet, M., Foong, L. K. J. Alloys Compd. 2020, 828, 1–7. https://doi.org/10.1016/j.jallcom.2020.154353.Search in Google Scholar

12. Alshamsi, H. A., Al Bedairy, M. A., Alwan, S. H. IOP Conf. Ser. Earth Environ. Sci. 2021, 722, 1–18. https://doi.org/10.1088/1755-1315/722/1/012005.Search in Google Scholar

13. Monsef, R., Ghiyasiyan-Arani, M., Salavati-Niasari, M. ACS Appl. Energy Matter. 2021, 4, 680–695. https://doi.org/10.1021/acsaem.0c02557.Search in Google Scholar

14. Altaee, H., Habeeb Alshamsi, H. A., Joda, B. A. AIP Conf. Proc. 2020, 2290, 1–9. https://doi.org/10.1063/5.0027427.Search in Google Scholar

15. Alshamsi, H. A. A., Hussein, B. S. Asian J. Chem. 2018, 30, 273–279. https://doi.org/10.14233/ajchem.2018.20888.Search in Google Scholar

16. Gabrovska, M., Crisan, D., Stanica, N., Nikolova, D., Bilyarska, L., Crisan, M., Kardjieva, R. E. Rev. Roum. Chim. 2014, 59, 447–452.Search in Google Scholar

17. Hu, G., Deng, X., Cao, Y., Peng, Z. Rare Met. 2007, 26, 236–241. https://doi.org/10.1016/s1001-0521(07)60208-3.Search in Google Scholar

18. Chen, Z. Z., Shi, E. W., Zheng, Y. Q., Xiao, B., Zhuang, J. Y. J. Am. Ceram. Soc. 2003, 86, 1058–1060. https://doi.org/10.1111/j.1151-2916.2003.tb03424.x.Search in Google Scholar

19. Liu, W., Li, J., Guo, J. J. Eur. Ceram. Soc. 2003, 23, 2289–2295. https://doi.org/10.1016/S0955-2219(03)00081-5.Search in Google Scholar

20. Hao, M., Gao, P., Liu, W., Fang, B., Liang, J., Zhang, T., Ding, Y., Zhang, H., Wang, F. Ceram. Int. 2021, 47, 4722–4728. https://doi.org/10.1016/j.ceramint.2020.10.041.Search in Google Scholar

21. Mindru, I., Marinescu, G., Gingasu, D., Patron, L., Ghica, C., Giurginca, M. Mater. Chem. Phys. 2010, 122, 491–497. https://doi.org/10.1016/j.matchemphys.2010.03.032.Search in Google Scholar

22. Zhang, T., Wang, F., Liang, J., Fang, B., Gao, P., Gao, G., Zhang, H., Zhang, Z. Ceram. Int. 2018, 44, 19543–19546. https://doi.org/10.1016/j.ceramint.2018.07.197.Search in Google Scholar

23. Wang, Q., Wang, Y., Liu, K., Liu, J., Wang, C., Wang, Y., Chang, Q. Adv. Powder. Technol. 2020, 31, 1290–1301. https://doi.org/10.1016/j.apt.2019.12.041.Search in Google Scholar

24. Gama, L., Riberio, M. A., Barros, B., Kiminami, R. H. G. A., Weber, I. T., Costa, A. C. F. M. J. Alloys Compd. 2009, 483, 453–455. https://doi.org/10.1016/j.jallcom.2008.08.111.Search in Google Scholar

25. Hussain, N., Alwan, S., Alshamsi, H., Sahib, I. Int. J. Chem. Eng. 2020, 2020, 1–13. https://doi.org/10.1155/2020/9068358.Search in Google Scholar

26. Alshamsi, H. A. H., Hussein, B. S. Orient. J. Chem. 2018, 34, 1898–1907. https://doi.org/10.13005/ojc/3404025.Search in Google Scholar

27. Tatarchuk, T., Shyichuk, A., Sojka, Z., Grybos, J., Naushad, M., Kotsyubynsky, V., Kowalska, M., Kwiatkowska-Marks, S., Danyliuk, N. J. Mol. Liq. 2021, 328, 1–10. https://doi.org/10.1016/j.molliq.2021.115375.Search in Google Scholar

28. Senberber, F. T., Derun, E. M. Russ. J. Inorg. Chem. 2020, 65, 1326–1332. https://doi.org/10.1134/S0036023620090156.Search in Google Scholar

29. Senberber, F. T., Ozdemir, O. D. Russ. J. Inorg. Chem. 2020, 65, 2020–2027. https://doi.org/10.1134/S0036023620140065.Search in Google Scholar

30. Ippolito, V. D., Andreozzi, G. B., Bosi, F., Halenius, U.Am. Min.2012, 97, 1828–1833. https://doi.org/10.2138/am.2012.4138.Search in Google Scholar

31. Kim, J. H., Son, B. R., Yoon, D. H., Hwang, K. T., Noh, H. G., Cho, W. S., Kim, U. S. Ceram. Int. 2012, 38, 5707–5712. https://doi.org/10.1016/j.ceramint.2012.04.015.Search in Google Scholar

32. He, X., Wang, F., Liu, H., Niu, L., Wang, X. J. Am. Ceram. Soc. 2021, 101, 2578–2588. https://doi.org/10.1111/jace.15422.Search in Google Scholar

33. Chang, Y., Feng, T., Wu, C., Chen, Y., Ke, K., Liu, Y., Wang, H., Dong, S. Adv. Powder Technol. 2018, 29, 1222–1229. https://doi.org/10.1016/j.apt.2018.02.014.Search in Google Scholar

34. Tatarchuk, T., Shyichuk, A., Lamkiewicz, J., Kowalik, J. Ceram. Int. 2020, 456, 14674–14685. https://doi.org/10.1016/j.ceramint.2020.02.269.Search in Google Scholar

35. Bernardi, M. I. B., Cava, S., Paiva-Santos, C. O., Leite, E. R., Paskocimas, C. A., Longo, E. J. Eur. Ceram. Soc. 2002, 22, 2911–2919. https://doi.org/10.1016/S0955-2219(02)00057-2.Search in Google Scholar

36. Tang, Y., Wu, C., Song, Y., Zheng, Y., Zhao, K. Ceram. Int. 2018, 44, 1019–1025. https://doi.org/10.1016/j.ceramint.2017.10.038.Search in Google Scholar

37. Ummartyotin, S., Sangngern, S., Kaewvilai, A., Koonsaeng, N., Manuspiya, H., Laobuthee, A. Int. J. Sustain. Energy 2009, 1, 31–37.Search in Google Scholar

Received: 2021-12-27
Accepted: 2022-07-06
Published Online: 2022-11-03
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8736/html?lang=en
Scroll to top button