Abstract
The spinel form of cobalt aluminate (CoAl2O4) was synthesized by a hydrothermal method in moderate conditions. The synthesized phases were qualitatively and quantitively identified by means of different characterization techniques. The effects of reaction conditions of Co/Al ratio, pH, stirring time, reaction temperature, reaction time and capping agent addition on the color performance and morphology were studied. The capping agents of n-cetyl-n, n, n trimethylammonium bromide (CTAB), 2-pyrrolidinone (PVP), triethylamine (TEA) and oleic acid (OA) were used. The probable reaction mechanism can be explained with the steps of (i) formation of Co–Al–O complexes and (ii) conversion to Co-spinel. In the reaction mechanism, the addition of capping agents improved the conversion of complexes to Co-spinel. The characteristic band values were observed at 550, 595 and 650 nm in the ultraviolet–visible wavelength range, in UV analyses. The lowest b* and the highest BET surface area were determined in the TEA added sample with values of – 37.4 and 16.02, respectively. Layer shaped particles were obtained in CTAB added samples whereas the angled cubic particles were seen in the TEA and OA added samples. The smallest particles were observed in the use of PVP addition to spinel, and the particle size was around 100 nm. The experimental results proved that characteristic properties of prepared samples can be enhanced by the selection of a suitable capping agent.
-
Author contributions: FTSD carried out the experiments and wrote the manuscript and EMD supervised the work and edited the manuscript.
-
Research funding: This study was financially supported by The Scientific Research Projects Coordination Unit of Nişantaşı University project (BAP00009).
-
Conflict of interest statement: Not applicable.
-
Availability of data and material: The data that support the findings of this study are available on request from the authors.
References
1. Altaee, H., Alshamsi, H. A. J. Phys.: Conf. Ser. 2020, 1664, 1–17. https://doi.org/10.1088/1742-6596/1664/1/012074.Search in Google Scholar
2. Al-Bedairy, M. A., Habeeb Alshamsi, H. A., Eurasian J. Anal. Chem. 2018, 13, 1–7. https://doi.org/10.29333/ejac/101785.Search in Google Scholar
3. Aly, K. A., Khalil, N. M., Algamal, Y., Saleem, Q. A. M. J. Alloys Compd. 2016, 676, 606–612. https://doi.org/10.1016/j.jallcom.2016.03.213.Search in Google Scholar
4. Baseri, J., Naghizadeh, R., Rezaie, H. R., Golestanifard, F., Golmohammed, M. Int. J. Appl. Ceram. Technol. 2020, 17, 2709–2715. https://doi.org/10.1111/ijac.13598.Search in Google Scholar
5. Boudiaf, S., Nasrallah, N., Mellal, M., Belabed, C., Belhamdi, B., Meziani, D., Mehdi, B., Trari, M. Optik 2020, 219, 1–9. https://doi.org/10.1016/j.ijleo.2020.165038.Search in Google Scholar
6. Chueachot, R., Nakhowong, R. Mater. Lett. 2020, 259, 1–5. https://doi.org/10.1016/j.matlet.2019.126904.Search in Google Scholar
7. Chen, Z., Shi, E., Li, W., Zheng, Y., Wu, N., Zhong, W. J. Am. Ceram. Soc. 2002, 85, 2949–2955. https://doi.org/10.1111/j.1151-2916.2002.tb00561.x.Search in Google Scholar
8. Ghomi, J. S., Teymuri, R. Iran J. Catal. 2021, 11, 113–123.Search in Google Scholar
9. Guo, S., Tang, H., You, L., Zhang, H., Li, J., Zhou, K. Chin. Chem. Lett. 2021, 32, 2828–2832. https://doi.org/10.1016/j.cclet.2021.01.019.Search in Google Scholar
10. Tatarchuk, T., Danyliuk, N., Kotsyubynsky, V., Shumskaya, A., Kaniukov, E., Ghfar, A. A., Naushad, M., Shyichuk, A. Chemosphere 2022, 294, 1–11. https://doi.org/10.1016/j.chemosphere.2022.133565.Search in Google Scholar PubMed
11. Yan, S. R., Gholami, T., Amiri, O., Niasari, M. S., Seifi, S., Amiri, M., Sabet, M., Foong, L. K. J. Alloys Compd. 2020, 828, 1–7. https://doi.org/10.1016/j.jallcom.2020.154353.Search in Google Scholar
12. Alshamsi, H. A., Al Bedairy, M. A., Alwan, S. H. IOP Conf. Ser. Earth Environ. Sci. 2021, 722, 1–18. https://doi.org/10.1088/1755-1315/722/1/012005.Search in Google Scholar
13. Monsef, R., Ghiyasiyan-Arani, M., Salavati-Niasari, M. ACS Appl. Energy Matter. 2021, 4, 680–695. https://doi.org/10.1021/acsaem.0c02557.Search in Google Scholar
14. Altaee, H., Habeeb Alshamsi, H. A., Joda, B. A. AIP Conf. Proc. 2020, 2290, 1–9. https://doi.org/10.1063/5.0027427.Search in Google Scholar
15. Alshamsi, H. A. A., Hussein, B. S. Asian J. Chem. 2018, 30, 273–279. https://doi.org/10.14233/ajchem.2018.20888.Search in Google Scholar
16. Gabrovska, M., Crisan, D., Stanica, N., Nikolova, D., Bilyarska, L., Crisan, M., Kardjieva, R. E. Rev. Roum. Chim. 2014, 59, 447–452.Search in Google Scholar
17. Hu, G., Deng, X., Cao, Y., Peng, Z. Rare Met. 2007, 26, 236–241. https://doi.org/10.1016/s1001-0521(07)60208-3.Search in Google Scholar
18. Chen, Z. Z., Shi, E. W., Zheng, Y. Q., Xiao, B., Zhuang, J. Y. J. Am. Ceram. Soc. 2003, 86, 1058–1060. https://doi.org/10.1111/j.1151-2916.2003.tb03424.x.Search in Google Scholar
19. Liu, W., Li, J., Guo, J. J. Eur. Ceram. Soc. 2003, 23, 2289–2295. https://doi.org/10.1016/S0955-2219(03)00081-5.Search in Google Scholar
20. Hao, M., Gao, P., Liu, W., Fang, B., Liang, J., Zhang, T., Ding, Y., Zhang, H., Wang, F. Ceram. Int. 2021, 47, 4722–4728. https://doi.org/10.1016/j.ceramint.2020.10.041.Search in Google Scholar
21. Mindru, I., Marinescu, G., Gingasu, D., Patron, L., Ghica, C., Giurginca, M. Mater. Chem. Phys. 2010, 122, 491–497. https://doi.org/10.1016/j.matchemphys.2010.03.032.Search in Google Scholar
22. Zhang, T., Wang, F., Liang, J., Fang, B., Gao, P., Gao, G., Zhang, H., Zhang, Z. Ceram. Int. 2018, 44, 19543–19546. https://doi.org/10.1016/j.ceramint.2018.07.197.Search in Google Scholar
23. Wang, Q., Wang, Y., Liu, K., Liu, J., Wang, C., Wang, Y., Chang, Q. Adv. Powder. Technol. 2020, 31, 1290–1301. https://doi.org/10.1016/j.apt.2019.12.041.Search in Google Scholar
24. Gama, L., Riberio, M. A., Barros, B., Kiminami, R. H. G. A., Weber, I. T., Costa, A. C. F. M. J. Alloys Compd. 2009, 483, 453–455. https://doi.org/10.1016/j.jallcom.2008.08.111.Search in Google Scholar
25. Hussain, N., Alwan, S., Alshamsi, H., Sahib, I. Int. J. Chem. Eng. 2020, 2020, 1–13. https://doi.org/10.1155/2020/9068358.Search in Google Scholar
26. Alshamsi, H. A. H., Hussein, B. S. Orient. J. Chem. 2018, 34, 1898–1907. https://doi.org/10.13005/ojc/3404025.Search in Google Scholar
27. Tatarchuk, T., Shyichuk, A., Sojka, Z., Grybos, J., Naushad, M., Kotsyubynsky, V., Kowalska, M., Kwiatkowska-Marks, S., Danyliuk, N. J. Mol. Liq. 2021, 328, 1–10. https://doi.org/10.1016/j.molliq.2021.115375.Search in Google Scholar
28. Senberber, F. T., Derun, E. M. Russ. J. Inorg. Chem. 2020, 65, 1326–1332. https://doi.org/10.1134/S0036023620090156.Search in Google Scholar
29. Senberber, F. T., Ozdemir, O. D. Russ. J. Inorg. Chem. 2020, 65, 2020–2027. https://doi.org/10.1134/S0036023620140065.Search in Google Scholar
30. Ippolito, V. D., Andreozzi, G. B., Bosi, F., Halenius, U.Am. Min.2012, 97, 1828–1833. https://doi.org/10.2138/am.2012.4138.Search in Google Scholar
31. Kim, J. H., Son, B. R., Yoon, D. H., Hwang, K. T., Noh, H. G., Cho, W. S., Kim, U. S. Ceram. Int. 2012, 38, 5707–5712. https://doi.org/10.1016/j.ceramint.2012.04.015.Search in Google Scholar
32. He, X., Wang, F., Liu, H., Niu, L., Wang, X. J. Am. Ceram. Soc. 2021, 101, 2578–2588. https://doi.org/10.1111/jace.15422.Search in Google Scholar
33. Chang, Y., Feng, T., Wu, C., Chen, Y., Ke, K., Liu, Y., Wang, H., Dong, S. Adv. Powder Technol. 2018, 29, 1222–1229. https://doi.org/10.1016/j.apt.2018.02.014.Search in Google Scholar
34. Tatarchuk, T., Shyichuk, A., Lamkiewicz, J., Kowalik, J. Ceram. Int. 2020, 456, 14674–14685. https://doi.org/10.1016/j.ceramint.2020.02.269.Search in Google Scholar
35. Bernardi, M. I. B., Cava, S., Paiva-Santos, C. O., Leite, E. R., Paskocimas, C. A., Longo, E. J. Eur. Ceram. Soc. 2002, 22, 2911–2919. https://doi.org/10.1016/S0955-2219(02)00057-2.Search in Google Scholar
36. Tang, Y., Wu, C., Song, Y., Zheng, Y., Zhao, K. Ceram. Int. 2018, 44, 1019–1025. https://doi.org/10.1016/j.ceramint.2017.10.038.Search in Google Scholar
37. Ummartyotin, S., Sangngern, S., Kaewvilai, A., Koonsaeng, N., Manuspiya, H., Laobuthee, A. Int. J. Sustain. Energy 2009, 1, 31–37.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Predicted interfacial thermal conductance and thermal conductivity of graphite flakes/Al composites with different alloy composition
- Tribological behaviour of nano-sized beta phase silicon nitride: effects of the contact conditions
- Experimental assessment on the contact characteristics of 3D printed flexible poly lactic acid (PLA) soft fingertips
- Efficient natural dye sensitized solar cell from PVDF based polymer electrolyte filled with layered graphite
- Regulation of the photovoltaic performance of TiO2@MAPbI3 core–shell nanowire arrays
- Hydrothermal synthesis of CoAl2O4 spinel: effect of reaction conditions on the characteristic and morphological features
- Peroxymonosulfate oxidation process activated with heterogeneous amorphous Co78Si8B14 alloy for degradation of Orange II
- A study of melting temperatures in bismuth and antimony
- Short Communication
- Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Predicted interfacial thermal conductance and thermal conductivity of graphite flakes/Al composites with different alloy composition
- Tribological behaviour of nano-sized beta phase silicon nitride: effects of the contact conditions
- Experimental assessment on the contact characteristics of 3D printed flexible poly lactic acid (PLA) soft fingertips
- Efficient natural dye sensitized solar cell from PVDF based polymer electrolyte filled with layered graphite
- Regulation of the photovoltaic performance of TiO2@MAPbI3 core–shell nanowire arrays
- Hydrothermal synthesis of CoAl2O4 spinel: effect of reaction conditions on the characteristic and morphological features
- Peroxymonosulfate oxidation process activated with heterogeneous amorphous Co78Si8B14 alloy for degradation of Orange II
- A study of melting temperatures in bismuth and antimony
- Short Communication
- Corrosion study of 430 stainless steel with cobalt electrodeposited obtained from the recycling of Li-ion batteries
- News
- DGM – Deutsche Gesellschaft für Materialkunde