Startseite Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compressive properties and energy absorption of ordered porous aluminum with strengthening structures

  • Moqiu Li , Yu Bai EMAIL logo , Mingming Su und Hai Hao ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, Z-strengthening structure (strengthening the Z-axis struts) and Graded-Z-strengthening structure (strengthening the Z-axis struts and node by gradient) based on cubic structure were investigated. Specimens were fabricated by indirect additive manufacturing. The compressive properties and energy absorption were characterized by axial quasi-static compression tests. The results showed that Z-strengthening enhances the compressive properties and energy absorption capacity of the original cubic structure. As for Graded-Z-strengthening, the stiffness of the structures was further increased. Moreover, different strengthening structures change the failure mode of the structures, which has a significant effect on mechanical properties and energy absorption capacities.


Corresponding authors: Yu Bai and Hai Hao, Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P.R. China, E-mail: (Y. Bai), (H. Hao)

  1. Research ethics: ALL procedures performed in studies were in accordance with the ethical standards.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: Moqiu Li: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources, Methodology, Investigation, Formal analysis, Data curation. Yu Bai: Writing – review & editing, Supervision, Funding acquisition, Formal analysis. Mingming Su: Methodology, Investigation. Hai Hao: Writing – review & editing, Supervision, Funding acquisition, Formal analysis.

  4. Use of Large Language Models, AI and Machine Learning Tools: This paper did not use Large Language Models, AI and Machine Learning Tools.

  5. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  6. Research funding: National Natural Science Foundation of China [52171030], the Key Basic Research Project of the Basic Strengthen Program [2021-JCJQ-ZD-043-00] and the National Key Research and Development Program of China [2018YFA0702903].

  7. Data availability: Data will be made available on request.

References

1. Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, 1997.10.1017/CBO9781139878326Suche in Google Scholar

2. Banhart, J. Manufacture, Characterisation and Application of Cellular Metals and Metal Foams. Prog. Mater. Sci. 2001, 46 (6), 559–632. https://doi.org/10.1016/S0079-6425(00)00002-5.Suche in Google Scholar

3. Mosanenzadeh, S. G.; Naguib, H. E.; Park, C. B.; Atalla, N. Design and Development of Novel Bio-Based Functionally Graded Foams for Enhanced Acoustic Capabilities. J. Mater. Sci. 2015, 50, 1248–1256. https://doi.org/10.1007/s10853-014-8681-6.Suche in Google Scholar

4. Kirsch, K. L.; Thole, K. A. Pressure Loss and Heat Transfer Performance for Additively and Conventionally Manufactured Pin Fin Arrays. Int. J. Heat Mass Tran. 2017, 108, 2502–2513. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.095.Suche in Google Scholar

5. Lu, T. J.; Stone, H. A.; Ashby, M. F. Heat Transfer in Open-Cell Metal Foams. Acta Mater. 1998, 46 (10), 3619–3635. https://doi.org/10.1016/S1359-6454(98)00031-7.Suche in Google Scholar

6. Jamshidinia, M.; Wang, L.; Tong, W.; Kovacevic, R. The Bio-Compatible Dental Implant Designed by Using Non-Stochastic Porosity Produced by Electron Beam Melting® (EBM). J. Mater. Process. Technol. 2014, 214 (8), 1728–1739. https://doi.org/10.1016/j.jmatprotec.2014.02.025.Suche in Google Scholar

7. Brandt, M.; Sun, S.; Leary, M.; Feih, S.; Elambasseril, J.; Liu, Q. High-Value SLM Aerospace Components: From Design to Manufacture. Adv. Mater. Res. 2013, 633, 135–147. https://doi.org/10.4028/www.scientific.net/AMR.633.135.Suche in Google Scholar

8. Parthasarathy, J.; Starly, B.; Raman, S. A Design for the Additive Manufacture of Functionally Graded Porous Structures with Tailored Mechanical Properties for Biomedical Applications. J. Manuf. Process. 2011, 13 (2), 160–170. https://doi.org/10.1016/j.jmapro.2011.01.004.Suche in Google Scholar

9. Wang, X. J.; Xu, S. Q.; Zhou, S. W.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y. M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review. Biomaterials 2016, 83, 127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012.Suche in Google Scholar PubMed

10. Su, M. M.; Wang, H.; Hao, H.; Fiedler, T. Compressive Properties of Expanded Glass and Alumina Hollow Spheres Hybrid Reinforced Aluminum Matrix Syntactic Foams. J. Alloys Compd. 2020, 821, 153233. https://doi.org/10.1016/j.jallcom.2019.153233.Suche in Google Scholar

11. Kemény, A.; Movahedi, N.; Fiedler, T.; Maróti, J. E.; Orbulov, I. N. The Influence of Infiltration Casting Technique on Properties of Metal Syntactic Foams and Their Foam-Filled Tube Structures. Mater. Sci. Eng. A 2022, 852, 143706. https://doi.org/10.1016/J.MSEA.2022.143706.Suche in Google Scholar

12. Orbulov, I. N.; Kemény, A.; Filepc, Á.; Gácsic, Z. Compressive Characteristics of Bimodal Aluminium Matrix Syntactic Foams. Compos. Part A 2019, 124, 105479. https://doi.org/10.1016/J.COMPOSITESA.2019.105479.Suche in Google Scholar

13. Marx, J. C.; Robbins, S. J.; Grady, Z. A.; Palmieri, F. L.; Wohl, C. J.; Rabiei, A. Polymer Infused Composite Metal Foam as a Potential Aircraft Leading Edge Material. Appl. Surf. Sci. 2020, 505, 144114. https://doi.org/10.1016/J.APSUSC.2019.144114.Suche in Google Scholar

14. Qu, H.; Rao, D.; Cui, J.; Gupta, N.; Wang, H.; Chen, Y.; Li, A.; Pan, L. Mg-Matrix Syntactic Foam Filled with Alumina Hollow Spheres Coated by MgO Synthesized with Solution Coating-Sintering. J. Mater. Res. Technol. 2023, 24, 2357–2371. https://doi.org/10.1016/J.JMRT.2023.03.160.Suche in Google Scholar

15. Movahedi, N.; Vesenjak, M.; Krstulović-Opara, K. L.; Belova, I. V.; Murch, G. E.; Fiedler, T. Dynamic Compression of Functionally-Graded Metal Syntactic Foams. Compos. Struct. 2021, 261, 113308. https://doi.org/10.1016/J.COMPSTRUCT.2020.113308.Suche in Google Scholar

16. Movahedi, N.; Fiedler, T. Sustainable Metallic Syntactic Foams Containing Cork Particles. Mater. Lett. 2024, 358, 135866. https://doi.org/10.1016/J.MATLET.2024.135866.Suche in Google Scholar

17. Qiu, C.; Yue, S.; Adkins, N. J. E.; Ward, M.; Hassanin, H.; Lee, P. D.; Withers, P. J.; Attallah, M. M. Influence of Processing Conditions on Strut Structure and Compressive Properties of Cellular Lattice Structures Fabricated by Selective Laser Melting. Mater. Sci. Eng. A 2015, 628 (25), 188–197. https://doi.org/10.1016/j.msea.2015.01.031.Suche in Google Scholar

18. Zhang, Y.; Liu, T.; Tizani, W. Experimental and Numerical Analysis of Dynamic Compressive Response of Nomex Honeycombs. Compos. Part B: Eng. 2018, 148, 27–39. https://doi.org/10.1016/j.compositesb.2018.04.025.Suche in Google Scholar

19. Cao, X.; Duan, S.; Liang, J.; Wen, W.; Fang, D. Mechanical Properties of an Improved 3D-Printed Rhombic Dodecahedron Stainless Steel Lattice Structure of Variable Cross Section. Int. J. Mech. Sci. 2018, 145, 53–63. https://doi.org/10.1016/j.ijmecsci.2018.07.006.Suche in Google Scholar

20. Mun, J.; Yun, B. G.; Ju, J.; Chang, B. M. Indirect Additive Manufacturing Based Casting of a Periodic 3D Cellular Metal – Flow Simulation of Molten Aluminum Alloy. J. Manuf. Process. 2015, 17, 28–40. https://doi.org/10.1016/j.jmapro.2014.11.001.Suche in Google Scholar

21. Snelling, D.; Qian, L.; Meisel, N.; Williams, C. B.; Batra, R. C.; Druschitz, A. P. Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds. Adv. Eng. Mater. 2015, 17 (7), 923–932. https://doi.org/10.1002/adam.201400524.Suche in Google Scholar

22. Li, S. J.; Xu, Q. S.; Wang, Z.; Hou, W. T.; Hao, Y. L.; Yang, R.; Murr, L. E. Influence of Cell Shape on Mechanical Properties of Ti–6Al–4V Meshes Fabricated by Electron Beam Melting Method. Acta Biomater. 2014, 10 (10), 4537–4547. https://doi.org/10.1016/j.actbio.2014.06.010.Suche in Google Scholar PubMed

23. Amirkhani, S.; Bagheri, R.; Yazdi, A. Z. Manipulating Failure Mechanism of Rapid Prototyped Scaffolds by Changing Nodal Connectivity and Geometry of the Pores. J. Biomech. 2012, 45 (16), 2866–2875. https://doi.org/10.1016/j.jbiomech.2012.08.029.Suche in Google Scholar PubMed

24. Leary, M.; Mazur, M.; Elambasseril, J.; Mcmillah, M.; Chirent, T.; Sun, Y.; Qian, M.; Easton, M.; Brandt, M. Selective Laser Melting (SLM) of AlSi12Mg Lattice Structures. Mater. Des. 2016, 98, 344–357. https://doi.org/10.1016/j.matdes.2016.02.127.Suche in Google Scholar

25. Maskery, I.; Aboulkhair, N. T.; Aremu, A. O.; Tuck, C. J.; Ashcroft, I. A.; Wildman, R. D.; Hague, R. J. M. A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting. Mater. Sci. Eng. A 2016, 670, 264–274. https://doi.org/10.1016/j.msea.2016.06.013.Suche in Google Scholar

26. Mostofizadeh, P.; Dorey, R. A.; Mohagheghian, I. Elastic Properties Prediction of Two- and Three-Dimensional Multi-Material Lattices. Thin-Walled Struct. 2024, 201, 112015. https://doi.org/10.1016/J.TWS.2024.112015.Suche in Google Scholar

27. Yuan, W.; Liu, W.; Song, H.; Huang, C. Butterfly Lattice Materials for Controllable Multi-Stage Energy Absorption. Compos. Struct. 2023, 324, 117550. https://doi.org/10.1016/J.COMPSTRUCT.2023.117550.Suche in Google Scholar

28. Wang, J.; Zhu, J.; Meng, L.; Sun, Q.; Liu, T.; Zhang, W. Topology Optimization of Gradient Lattice Structure Filling with Damping Material under Harmonic Frequency Band Excitation. Eng. Struct. 2024, 309, 118014. https://doi.org/10.1016/J.ENGSTRUCT.2024.118014.Suche in Google Scholar

29. Zhou, H.; Zhang, D. Z.; He, N. Compressive Properties of Novel Hybrid-Dimensional Gyroid Lattice Structure. Mater. Lett. 2023, 344, 134424. https://doi.org/10.1016/J.MATLET.2023.134424.Suche in Google Scholar

30. Liang, Z.; Chen, X.; Sun, Z.; Guo, Y.; Li, Y.; Chang, H.; Zhou, L. A Study on the Compressive Mechanical Properties of 316L Diamond Lattice Structures Manufactured by Laser Powder Bed Fusion Based on Actual Relative Density. J. Manuf. Process. 2022, 84, 414–423. https://doi.org/10.1016/J.JMAPRO.2022.09.041.Suche in Google Scholar

31. Wang, H.; Fu, Y.; Su, M.; Hao, H. Effect of Structure Design on Compressive Properties and Energy Absorption Behavior of Ordered Porous Aluminum Prepared by Rapid Casting. Mater. Des. 2019, 167, 107631. https://doi.org/10.1016/j.matdes.2019.107631.Suche in Google Scholar

32. Wang, Z.; Li, P. Characterisation and Constitutive Model of Tensile Properties of Selective Laser Melted Ti-6Al-4V Struts for Microlattice Structures. Mater. Sci. Eng. A 2018, 725, 350–358. https://doi.org/10.1016/j.msea.2018.04.006.Suche in Google Scholar

33. Afshar, M.; Anaraki, A. P.; Montazerion, H.; Kadkhodapour, J. Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures. J. Mech. Behav. Biomed. Mater. 2016, 62, 481–494. https://doi.org/10.1016/j.jmbbm.2016.05.027.Suche in Google Scholar PubMed

Received: 2021-05-05
Accepted: 2024-08-02
Published Online: 2025-01-30
Published in Print: 2025-01-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8344/pdf?lang=de
Button zum nach oben scrollen