Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
Abstract
Ceramic coatings were prepared on 6061 aluminum alloy in electrolytes containing La2O3 particles using the micro-arc oxidation technique. The main work focuses on the microstructure, phase composition, elemental distribution and corrosion resistance of micro-arc oxidation coatings. The results showed that the addition of La2O3 increased the oxidation voltage and promoted the formation rate. Scanning electron microscopy observations indicated that the quantity of discharge micropores decreased and the thickness increased, and thus, the microhardness increased. The X-ray diffraction results showed that the coatings mainly consisted of γ-Al2O3, α-Al2O3 and SiO2. Electrochemical corrosion tests showed that the corrosion resistance of the coated sample with La2O3 increased greatly because the addition of La2O3 significantly reduced the micropores of the coating surface and made the coating thicker, smoother and harder. Hence, the addition of La2O3 can optimize the structure of the micro-arc oxidation coating and improve its corrosion resistance.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wasekar, N. P., Jyothirmayi, A., Sundararajan, G. Int. J. Fatig. 2011, 33, 1268. https://doi.org/10.1016/j.ijfatigue.2011.03.016.Search in Google Scholar
2. Wang, L. F., Sun, J., Zhu, X. G., Cheng, L. Y., Shi, Y., Guo, L. J., Yan, B. Materials 2018, 11, 66. https://doi.org/10.3390/ma11010066.Search in Google Scholar PubMed PubMed Central
3. Paksoy, A. H., Muhaffel, F., Koca, M., Gokce, O., Mohammadzadeh, S., Cimenoglu, H. Mater. Tehnol. 2017, 51, 117. https://doi.org/10.17222/mit.2015.302.Search in Google Scholar
4. Krauss, A. R., Dewald, A. B., Scott, P., Savage, H. Fusion Technol. 1991, 19, 913. https://doi.org/10.13182/FST91-A29461.Search in Google Scholar
5. Xia, W. M., Li, N., Deng, B., Zheng, R. M., Chen, Y. Q. Ceram. Int. 2019, 45, 11062. https://doi.org/10.1016/j.ceramint.2019.02.192.Search in Google Scholar
6. Wang, P., Wu, Y., Xiao, Y. T., Pu, J., Guo, X. G., Huang, J., Xiang, C. L. J. Mater. Eng. Perform. 2016, 25, 3972. https://doi.org/10.1007/s11665-016-2255-5.Search in Google Scholar
7. Wang, J., Huang, S., He, M. Y., Wangyang, P. H., Lu, Y. F., Huang, H. J., Xu, L. Ceram. Int. 2018, 44, 7656. https://doi.org/10.1016/j.ceramint.2018.01.189.Search in Google Scholar
8. Huang, H. J., Wei, X. W., Yang, J. X., Wang, J. Appl. Surf. Sci. 2016, 389, 1175. https://doi.org/10.1016/j.apsusc.2016.08.088.Search in Google Scholar
9. Liu, J. A., Zhu, X. Y., Huang, Z. Q., Yu, S. R., Yang, X. Z. J. Coating Technol. Res. 2012, 9, 357. https://doi.org/10.1007/s11998-011-9377-3.Search in Google Scholar
10. Wang, Y. P., Zeng, L. L., Zhang, H. H., Xiang, J. H., Zhang, S. F., Chang, W. H., Zhang, R. F., Wang, Q., Sheng, Y., Zhao, Y. Materials 2018, 11, 344. https://doi.org/10.3390/ma11030344.Search in Google Scholar PubMed PubMed Central
11. Xu, J. L., Xiao, Q. F., Me, D. D., Tong, Y. X., Zheng, Y. F., Li, L. Surf. Coating. Technol. 2017, 309, 621. https://doi.org/10.1016/j.surfcoat.2016.12.023.Search in Google Scholar
12. Krishna, L. R., Purnima, A. S., Wasekar, N. P., Sundararajan, G. Metall. Mater. Trans. A. 2008, 38, 370. https://doi.org/10.1007/s11661-006-9054-9.Search in Google Scholar
13. Sundararajan, G., Wasekar, N. P., Ravi, N. Trans. Indian Inst. Met. 2010, 63, 203. https://doi.org/10.1007/s12666-010-0028-7.Search in Google Scholar
14. Wasekar, N. P., Ravi, N., Babu, P. S., Krishna, L. R., Sundararajan, G. Metall. Mater. Trans. A. 2010, 41, 255. https://doi.org/10.1007/s11661-009-0057-1.Search in Google Scholar
15. Krishna, L. R., Madhavi, Y., Sahithi, T., Wasekar, N. P., Chavan, N. M., Rao, D. S. Int. J. Fatig. 2018, 106, 165. https://doi.org/10.1016/j.ijfatigue.2017.09.020.Search in Google Scholar
16. Gu, X., Jiang, B. L., Li, H. T., Liu, C. C., Shao, L. L. Mater. Res. Express 2018, 5, 056522. https://doi.org/10.1088/2053-1591/aac33a.Search in Google Scholar
17. Lu, X. P., Blawert, C., Huang, Y. D., Ovri, H., Zheludkevich, M. L., Kainer, K. U. Electrochim. Acta 2016, 187, 20. https://doi.org/10.1016/j.electacta.2015.11.033.Search in Google Scholar
18. Wang, P., Wu, T., Peng, H., Guo, X. Y. Mater. Lett. 2016, 170, 171. https://doi.org/10.1016/j.matlet.2016.02.024.Search in Google Scholar
19. Wang, P., Gong, Z. Y., Hu, J., Pu, J., Cao, W. J. Surf. Eng. 2019, 35, 627. https://doi.org/10.1080/02670844.2018.1557996.Search in Google Scholar
20. Wang, P., Wei, X. W., Pu, J., Xiong, D., Liu, J. W., Gong, Z. Y., Hu, J., Cao, W. J., Zu, X. T. Int. J. Electrochem. Sci. 2019, 14, 5161. https://doi.org/10.20964/2019.06.60.Search in Google Scholar
21. Wang, P., Wu, T., Xiao, Y. T., Pu, J., Guo, X. Y. Mater. Lett. 2016, 182, 27. https://doi.org/10.1016/j.matlet.2016.06.070.Search in Google Scholar
22. Ranjbar, M., Yousef, M. J. Inorg. Organomet. Polym. Mater. 2014, 24, 652. https://doi.org/10.1007/s10904-014-0019-y.Search in Google Scholar
23. Ozawa, M., Araki, K. Surf. Coating. Technol. 2015, 271, 80. https://doi.org/10.1016/j.surfcoat.2015.01.010.Search in Google Scholar
24. Lee, C. C., Lin, P. J. Mater. Sci. Mater. Electron. 1998, 9, 409. https://doi.org/10.1023/A:1008969102414.Search in Google Scholar
25. Yasuoka, M., Hirao, K., Brito, M. E., Kanzaki, S. J. Am. Ceram. Soc. 1995, 78, 1853. https://doi.org/10.1111/j.1151-2916.1995.tb08899.x.Search in Google Scholar
26. Wang, P., Wu, T., Xiao, Y. T., Zhang, L., Pu, J., Cao, W. J., Zhong, X. M. Vacuum 2017, 142, 21. https://doi.org/10.1016/j.vacuum.2017.04.038.Search in Google Scholar
27. Sunding, M. F., Hadidi, K., Diplas, S., Løvvik, O. M., Norby, T. E., Gunnæs, A. E. J. Electron. Spectrosc. Relat. Phenom. 2011, 184, 399. https://doi.org/10.1016/j.elspec.2011.04.002.Search in Google Scholar
28. Jerry, P. H. L., Zhou, X., Pang, Y., Zhu, L., Vovk, E. I., Cong, L., van Bavel, A. P., Li, S., Yang, Y. Phys. Chem. Chem. Phys. 2019, 21, 22351. https://doi.org/10.1039/c9cp04187g.Search in Google Scholar
29. Liu, W. Y., Liu, Y., Lin, Y. H., Zhang, Z., Feng, S. B., Talha, M., Shi, Y. S., Shi, T. H. Appl. Surf. Sci. 2019, 475, 645. https://doi.org/10.1016/j.apsusc.2018.12.233.Search in Google Scholar
30. Murr, L. E., Inal, O. T. Thin Solid Films 1979, 64, 77. https://doi.org/10.1016/0040-6090(79)90547-9.Search in Google Scholar
31. Gnedenkov, A. S., Sinebryukhov, S. L., Mashtalyar, D. V., Gnedenkov, S. V. Corrosion Sci. 2016, 102, 348. https://doi.org/10.1016/j.corsci.2015.10.026.Search in Google Scholar
32. Zeng, R. C., Zhang, F., Lan, Z. D., Cui, H. Z., Han, E. H. Corrosion Sci. 2014, 88, 452. https://doi.org/10.1016/j.corsci.2014.08.007.Search in Google Scholar
33. Tang, H., Han, Y., Wu, T., Tao, W., Jian, X., Wu, Y. F., Xu, F. J. Appl. Surf. Sci. 2017, 400, 391. https://doi.org/10.1016/j.apsusc.2016.12.216.Search in Google Scholar
34. Dehghanghadikolaei, A., Ibrahim, H., Amerinatanzi, A., Hashemi, M., Moghaddam, N. S., Elahinia, M. J. Mater. Sci. 2019, 54, 7333. https://doi.org/10.1007/s10853-019-03375-1.Search in Google Scholar
35. Yu, C., Cui, L. Y., Zhou, Y. F., Han, Z. Z., Chen, X. B., Zeng, R. C., Zou, Y. H., Li, S. Q., Zhang, F., Han, E. H. Surf. Coating. Technol. 2018, 344, 1. https://doi.org/10.1016/j.surfcoat.2018.03.007.Search in Google Scholar
36. Wang, P., Pu, J., Xiao, Y. T., Hu, W. J., Wu, T., Cao, W. J., Gong, Z. Y., Huang, M. Surf. Rev. Lett. 2019, 26, 1850178. https://doi.org/10.1142/S0218625X18501780.Search in Google Scholar
37. Huang, D., Zhang, X. Y., Wu, D. F., Zhou, X. S. Adv. Mater. Res. 2013, 850–851, 140. https://doi.org/10.4028/www.scientific.net/AMR.850-851.140.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde