Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
Abstract
Surface mechanical nano-alloying treatment (SMNAT) was employed to fabricate a nanostructured Ti coating on LZ91 Mg–Li alloy. Microstructure, surface hardness and in-vitro biocompatibility of the Ti-coated sample were investigated in comparison with those of an untreated sample. Experimental results showed that a nanostructured Ti coating with a thickness of 35 to 60 μm was formed after SMNAT for 2 h. The average grain size in the top surface of the Ti coating was about 30 nm. The surface of the Ti coating is rougher than that of the untreated LZ91 sample, in which the values of Ra, Rq and Rz were 7.83, 9.57 and 14.85 μm, respectively. The hardness of the Ti coating top surface was about 483 HV. Cell proliferation and differentiation on Ti coated samples were enhanced relative to those on the untreated samples.
Funding statement: This work was financially supported by the National Natural Science Foundation of China (51701057), the Fundamental Research Funds for the Central Universities (JZ2018HGTB0265), the Fund of Anhui Kelante Co., Ltd (W2020JSKF0061), the Industrial Guiding Fund of Changfeng County and Hefei University of Technology (JZ2019QTXM0281), and the Fund of Anhui Wanan Co., Ltd (W2019JSKF0210).
References
[1] D. Zhang, Y. Liu, Z.G. Liu: Coatings. 10 (2020) 828. DOI:10.3390/coatings1009082810.3390/coatings10090828Suche in Google Scholar
[2] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal: Mater. Sci. Eng. C. 68 (2016) 948. PMid:27524097; DOI:10.1016/j.msec.2016.06.02010.1016/j.msec.2016.06.020Suche in Google Scholar PubMed
[3] Y. Liu, Y.H. Wu, D. Bian, S. Gao, S. Leeflang: Acta Biomater. 62 (2017) 418. PMid:28823717; DOI:10.1016/j.actbio.2017.08.02110.1016/j.actbio.2017.08.021Suche in Google Scholar PubMed
[4] W.R. Zhou, Y.F. Zheng, M.A. Leeflang, J. Zhou: Acta Biomater. 9 (2013) 8488. DOI:10.1016/j.actbio.2013.01.03210.1016/j.actbio.2013.01.032Suche in Google Scholar PubMed
[5] J.Y. Wu, D.L. Zhao, B. Lee.A. Roy, R. Yao, S. Chen, Z.Y. Dong, W.R. Heineman, P.N. Kumta: ACS Biomater. Sci. Eng. 9 (2020) 1950. PMid:33455316; DOI:10.1021/acsbiomaterials.9b0159110.1021/acsbiomaterials.9b01591Suche in Google Scholar PubMed
[6] R. Maurya, A.R. Siddiqui, P.K. Katiyar, K Balani: J. Mater. Sci. Technol. 35 (2019) 1767. DOI:10.1016/j.jmst.2019.03.02810.1016/j.jmst.2019.03.028Suche in Google Scholar
[7] T. Mineta, H. Sato: Mater. Sci. Eng. A. 735 (2018) 418. DOI:10.1016/j.msea.2018.08.07710.1016/j.msea.2018.08.077Suche in Google Scholar
[8] Niinomi. M. Mater. Trans. 49 (2008) 2170. DOI:10.2320/matertrans.L-MRA200882810.2320/matertrans.L-MRA2008828Suche in Google Scholar
[9] S. Ali, A.M.A. Rani, Z. Baig: Corros. Rev. 5 (2020) 381. DOI:10.1515/corrrev-2020-000110.1515/corrrev-2020-0001Suche in Google Scholar
[10] R. Pouriamanesh, J. Vahdati-Khaki, Q. Mohammadib: J. Alloys Comp. 488 (2009) 430. DOI:10.1016/j.jallcom.2009.08.15010.1016/j.jallcom.2009.08.150Suche in Google Scholar
[11] E. Zhang, L.P. Xu, Y. Ke: Scr. Mater. 53 (2005) 523. DOI:10.1016/j.scriptamat.2005.05.00910.1016/j.scriptamat.2005.05.009Suche in Google Scholar
[12] G.S. Wu, K.J. Ding, X.Q. Zeng, X.M. Wang, S.S. Yao: Scr. Mater. 61 (2009) 269. DOI:10.1016/j.scriptamat.2009.03.06110.1016/j.scriptamat.2009.03.061Suche in Google Scholar
[13] L.Y. Mei, J. Sun.Y. Li, Y.Y. Lei, X.D. Du, Y.C. Wu: Appl. Surf. Sci. 499 (2020) 143915. DOI:10.1016/j.apsusc.2019.14391510.1016/j.apsusc.2019.143915Suche in Google Scholar
[14] J. Sun, Q.T. Yao: Coatings. 6 (2016) 63. DOI:10.3390/coatings604006310.3390/coatings6040063Suche in Google Scholar
[15] Q.T. Yao, J. Sun, Y.J. Zhu, W.P. Tong: Surf. Eng. 35 (2019) 927. DOI:10.1080/02670844.2018.155473810.1080/02670844.2018.1554738Suche in Google Scholar
[16] J.N. Sahu, C. Sasikumar: J. Mater. Sci. Technol. 263 (2019) 285. DOI:10.1016/j.jmatprotec.2018.08.02710.1016/j.jmatprotec.2018.08.027Suche in Google Scholar
[17] F. Saba, E. Kabiri, J.V. Khaki, M.H. Sabzevar: Powder Technol. 288 (2016) 76. DOI:10.3139/146.10137510.3139/146.101375Suche in Google Scholar
[18] T. Varol, A. Canakci: Philos. Mag. Lett. 93 (2013) 339. DOI:10.1080/09500839.2013.77975810.1080/09500839.2013.779758Suche in Google Scholar
[19] A. Canakci, F. Erdemir, T. Varol, S. Ozkaya: Powder Technol. 247 (2013) 24. DOI:10.1016/j.powtec.2013.07.00210.1016/j.powtec.2013.07.002Suche in Google Scholar
[20] M. Zuo, D.G. Zhao, Z.Q. Wang, H.R. Geng: Mater. Sci. Technol. 31 (2014) 1051. DOI:10.1179/1743284714Y.000000066410.1179/1743284714Y.0000000664Suche in Google Scholar
[21] W.S. Chuang, Y.C. Cai, J.C. Huang, W.Y. Tsai: Surf. Coat. Technol. 340 (2018) 145. DOI:10.1016/j.surfcoat.2018.02.06110.1016/j.surfcoat.2018.02.061Suche in Google Scholar
[22] D. Fabijanic, A. Taylor, K. Ralston: Corrosion. 69 (2012) 527. DOI:10.5006/076310.5006/0763Suche in Google Scholar
[23] V.Y. Zadorozhnyy, A. Shahzad, M.D. Pavlov, D. Kozak: J. Alloys Compd. 707 (2017) 351. DOI:10.1016/j.jallcom.2016.11.18910.1016/j.jallcom.2016.11.189Suche in Google Scholar
[24] C.L. Chen, Suprianto: Surf. Coat. Technol. 386 (2020) 125443. DOI:10.1016/j.surfcoat.2020.12544310.1016/j.surfcoat.2020.125443Suche in Google Scholar
[25] A. Canakci, F. Erdemir, T. Varol, R. Dalmış, S. Ozkaya: Powder. Technol. 268 (2014) 110. DOI:10.1016/j.powtec.2014.08.03410.1016/j.powtec.2014.08.034Suche in Google Scholar
[26] K. Chen, H.M. Yang, J.S. Gao, Y. Yang: Mater. Charact. 135 (2018) 265. DOI:10.1016/j.matchar.2017.11.05110.1016/j.matchar.2017.11.051Suche in Google Scholar
[27] C. Chen, X.M. Feng, Y.F. Shen: J. Alloys Compd. 813 (2020) 152223. DOI:10.1016/j.jallcom.2019.15222310.1016/j.jallcom.2019.152223Suche in Google Scholar
[28] C. Chen, X.M. Feng, Y.F. Shen: J. Alloys Compd. 708 (2017) 639. DOI:10.1016/j.jallcom.2017.03.08210.1016/j.jallcom.2017.03.082Suche in Google Scholar
[29] Z. Gawroński: Surf. Coat. Technol. 124 (2000) 19. DOI:10.1016/S0257-8972(99)00620-910.1016/S0257-8972(99)00620-9Suche in Google Scholar
[30] Y. Li, X.C. Zhu, J. Sun, Q.T. Yao, X.D. Du, Y.C. Wu: Surf. Eng. 2020. DOI:10.1080/02670844.2020.184069310.1080/02670844.2020.1840693Suche in Google Scholar
[31] L.S. Qiu, X.D. Zhu, K.W. Xu: Surf. Coat. Technol. 332 (2007) 267. Doi.org/10.1016/j.surfcoat.2017.07.076.DOI:10.1016/j.surfcoat.2017.07.07610.1016/j.surfcoat.2017.07.076Suche in Google Scholar
[32] Q.Z. Chen, G.A. Thouas: Mater. Sci. Eng. R Rep. 87 (2015) 1. DOI:10.1016/j.mser.2014.10.00110.1016/j.mser.2014.10.001Suche in Google Scholar
[33] J.W. Lu, Y. Zhang, W.T. Huo: Appl. Surf. Sci. 434 (2018) 63. DOI:10.1016/j.apsusc.2017.10.16810.1016/j.apsusc.2017.10.168Suche in Google Scholar
[34] A. Günay-Bulutsuz, Ö. Berrak, H. Aygül-Yeprem, E.D. Arisan, M.E. Yurcia: Mater. Sci. Eng. C. 91 (2018) 382. PMid:30033268; DOI:10.1016/j.msec.2018.05.05610.1016/j.msec.2018.05.056Suche in Google Scholar PubMed
[35] Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, R. Boyd: Acta Biomater. 7 (2011) 900. PMid:20887818; DOI:10.1016/j.actbio.2010.09.03310.1016/j.actbio.2010.09.033Suche in Google Scholar PubMed
[36] J.T. Davies, J. Lam, P.E. Tomlins: Biomed. Mater. 5 (2010) 015002. PMid:20057015; DOI:10.1088/1748-6041/5/1/01500210.1088/1748-6041/5/1/015002Suche in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News
Artikel in diesem Heft
- Contents
- Original Contributions
- Two-dimensional TiC nanocrystals produced by molten salt treatment of carbon black and Ti2AlC
- Effect of Gd addition on non-isothermal and isothermal crystallisation of Cu–Zr–Al bulk metallic glass
- Effects of carbon doping on structure and magnetocaloric properties of Mn1.25Fe0.7P0.5Si0.5 alloys
- Composition design, microstructure, and mechanical properties of novel Ti–Co–Ni–Zr complex concentrated alloys
- The effect of V on the morphology of TiB2 particles in as-cast aluminum composites
- Parametric optimization of friction stir processing on micro-hardness of Al/B4C composite
- Improved in-vitro biocompatibility of LZ91 Mg–Li alloy by formation of nanostructured Ti coating through surface mechanical nano-alloying treatment
- Short Communications
- A solid-state approach for the low temperature synthesis of Cr3Si hollow particles
- Review
- Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
- News
- News