Startseite Technik Microstructure and mechanical properties of laser welded titanium alloy and stainless steel joint with composite interlayer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and mechanical properties of laser welded titanium alloy and stainless steel joint with composite interlayer

  • Yan Zhang EMAIL logo , YiDi Gao , JianPing Zhou , DaQian Sun und HongMei Li
Veröffentlicht/Copyright: 12. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, TA2/T2 was used as a composite interlayer to prevent the formation of brittle Ti-Fe intermetallics when joining TC4 Ti alloy to 304 stainless steel. The TA2/T2 (commercially pure Ti and Cu) composite interlayer was prepared by explosive welding. The laser was focused on the TC4-TA2 interface, which joined the TC4 and TA2 by fusion welding. At the TC4-TA2 interface, a weld zone was formed due to the mixing of molten TC4 and TA2. The laser was also focused on the T2-304 stainless steel interface, a weld zone was formed due to the mixing of molten T2 and 304 stainless steel. Composite interlayer TA/T2 was used not only to prevent the formation of Ti-Fe intermetallics during welding but also to improve microstructure and properties of the stainless steel–Ti alloy joint. The joint fractured at the TA2/T2 explosive welding interface with a maximum tensile strength of 428 MPa.


Yan Zhang, PhD Master Instructor School of Mechanical Engineering State Key Laboratory for Manufacturing Systems Engineering, China Xinjiang University Wulumuqi 830000 P. R. China Tel: +86-10-2343-4456

References

[1] S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, Y. Suzuki, A. Masuda: Smart. Mater. Struct. 11 (2002) 218. DOI:10.1088/0964-1726/11/2/30510.1088/0964-1726/11/2/305Suche in Google Scholar

[2] S.A. Shabalovskaya: Bio-Med. Mater. Eng. 6 (1995) 267. DOI:10.3233/BME-1996-640510.3233/BME-1996-6405Suche in Google Scholar

[3] Y.D. Gao, Y. Zhang, X.Y. Gu: Mater. Lett. 255 (2019) 126521. DOI:10.1016/j.matlet.2019.12652110.1016/j.matlet.2019.126521Suche in Google Scholar

[4] I. Tomashchuk, D. Grevey: Mater. Sci.Eng. A. 622 (2015) 37. DOI:10.1016/j.msea.2014.10.08410.1016/j.msea.2014.10.084Suche in Google Scholar

[5] S. Kundu, S. Chatterjee: Mate. Charact. 59 (2008) 631. DOI:10.1016/j.matchar.2007.05.01510.1016/j.matchar.2007.05.015Suche in Google Scholar

[6] Y. Zhang, D.Q. Sun, X.Y. Gu, Y.J. Liu: Int. J. Adv. Manuf. Technol. 90 (2017) 953. DOI:10.1007/s00170-016-9453-z10.1007/s00170-016-9453-zSuche in Google Scholar

[7] M. Lee, J. Park, J. Lee, C. Rhee: J. Nucl. Mater. 439 (2013) 168. DOI:10.1016/j.jnucmat.2013.04.00210.1016/j.jnucmat.2013.04.002Suche in Google Scholar

[8] I. Magnabosco, P. Ferro, F. Bonollo, L. Arnberg: Mater. Sci. Eng A. 424 (2006) 163. DOI:10.1016/j.msea.2006.03.09610.1016/j.msea.2006.03.096Suche in Google Scholar

[9] S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, A. Yamamoto: Sci. Technol. Weld. Join. 15 (2010) 124. DOI:10.1179/136217109X1257781448669210.1179/136217109X12577814486692Suche in Google Scholar

[10] W. Li, L. Yan, S. Karnati: J. Mater. Process. Technol. 242 (2017) 39. DOI:10.1016/j.jmatprotec.2016.11.01010.1016/j.jmatprotec.2016.11.010Suche in Google Scholar

[11] Y. Zhang, D.Q. Sun, X.Y. Gu, L. HongMei: Mater. Lett. 185 (2016) 152. DOI:10.1016/j.matlet.2016.08.13810.1016/j.matlet.2016.08.138Suche in Google Scholar

Received: 2020-11-02
Accepted: 2021-02-17
Published Online: 2021-05-12
Published in Print: 2021-05-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Heruntergeladen am 2.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8139/pdf
Button zum nach oben scrollen