Abstract
In this study, chitosan/perlite nanocomposites were synthesized using the solvent casting method and then characterized using Fourier transform infrared spectroscopy, X-ray diffraction, optical contact angle, differential thermal analysis/thermogravimetry, differential scanning calorimetry, atomic force microscopy, transmission electron microscopy and Zetasizer NanoS devices. Perlite was determined to be dispersed in nano size and homogeneously in the chitosan matrix. Chitosan/perlite nanocomposite was generally more thermally stable compared to pure chitosan polymer. The fact that the amount of perlite in the nanocomposite increased showed that the hydrophilic properties of nanocomposites increased. In addition, antibacterial activities of the samples were investigated using the agar-disk diffusion method and hemocompatibility testing was also performed.
Conflict of interest
The authors declare that they have no conflict of interest.
References
[1] S.F. Wang, L. Shen, Y.J. Tong, L. Chen, I.Y. Phang, P.Q. Lim, T.X. Liu: Polym. Degrad. Stab. 90 (2005) 123. DOI:10.1016/j.polymdegradstab.2005.03.00110.1016/j.polymdegradstab.2005.03.001Search in Google Scholar
[2] M. Shahbazi, G. Rajabzadeh, S.J. Ahmadi: Carbohydr. Polym. 157 (2017) 226. DOI:10.1016/j.carbpol.2016.09.01810.1016/j.carbpol.2016.09.018Search in Google Scholar PubMed
[3] M.S.K. Sofla, S. Mortazavi, J. Seyfi: Carbohydr. Polym. 232 (2020) 115784. DOI:10.1016/j.carbpol.2019.11578410.1016/j.carbpol.2019.115784Search in Google Scholar PubMed
[4] D. Archana, B.K. Singha, J. Duttab, P.K. Dutta: Carbohydr. Polym. 95 (2013) 530. DOI:10.1016/j.carbpol.2013.03.03410.1016/j.carbpol.2013.03.034Search in Google Scholar PubMed
[5] M. Maruthupandy, G. Rajivgandhi, S. Kadaikunnan, T. Veeramani, N.S. Alharbi, T. Muneeswaran, J.M. Khaled, W. Jun-Li, K.F. Alanzi: Carbohydr. Polym. 230 (2020) 115646. DOI:10.1016/j.carbpol.2019.11564610.1016/j.carbpol.2019.115646Search in Google Scholar PubMed
[6] Y. Turhan, M. Doğan, M. Alkan: Ind. Eng. Chem. Res. 49 (2010) 1503. DOI:10.1021/ie901384x10.1021/ie901384xSearch in Google Scholar
[7] Y. Turhan, Z.G. Alp, M. Alkan, M. Doğan: Microporous Mesoporous Mater. 174 (2013) 144. DOI:10.1016/j.micromeso.2013.03.00210.1016/j.micromeso.2013.03.002Search in Google Scholar
[8] M. Doğan, M. Alkan, Ü. Çakır: J. Colloid Interface Sci. 192 (1997) 114. DOI:10.1006/jcis.1997.491310.1006/jcis.1997.4913Search in Google Scholar
[9] M. Doğan, M. Alkan, Y. Onganer: Water Air Soil Pollut. 120 (2000) 229. DOI:10.1023/A:100529772430410.1023/A:1005297724304Search in Google Scholar
[10] A. Sarı, A. Karaipekli, C. Alkan: Chem. Eng. J. 155 (2009) 899. DOI:10.1016/j.cej.2009.09.0010.1016/j.cej.2009.09.00Search in Google Scholar
[11] A. Karaipekli, A. Sarı, K. Kaygusuz: Energy Sources, Part A. 31 (2009) 814. DOI:10.1080/1556703070175276810.1080/15567030701752768Search in Google Scholar
[12] N. Arsalani, M. Hayatifar: J. Appl. Polym. Sci. 93 (2004) 2528. DOI:10.1002/app.2072010.1002/app.20720Search in Google Scholar
[13] S. Kalyani, J. Ajitha Priya, P. Srinivasa Rao, A. Krishnaiah: Sep. Sci. Technol. 40 (2005) 1483. DOI:10.1081/SS-20005594010.1081/SS-200055940Search in Google Scholar
[14] J.W. Rhim, S.I. Hong, H.M. Park, K.W. Ng. Perry: J. Agric. Food Chem. 54 16 (2006) 5814. DOI:10.1021/jf060658 h10.1021/jf060658hSearch in Google Scholar PubMed
[15] R. Jayakumar, D. Menon, K. Manzoor, S.V. Nair, H. Tamur: Carbohydr. Polym. 82 (2010) 227. DOI:10.1016/j.carbpol.2010.04.07410.1016/j.carbpol.2010.04.074Search in Google Scholar
[16] P. Demirçivi: Int. J. Biol. Macromol. 118 (2018) 340. DOI:10.1016/j.ijbiomac.2018.06.06510.1016/j.ijbiomac.2018.06.065Search in Google Scholar PubMed
[17] B.K. Kızılduman, M. Alkan, M. Doğan, Y. Turhan: Adv. Mater. Sci. 17 3 (2017) 5. DOI:10.1515/adms-2017-001210.1515/adms-2017-0012Search in Google Scholar
[18] V. Thomas, M.M. Yallapu, B. Sreedhar, S.K. Bajpai: J. Colloid Interface Sci. 315 1 (2007) 389. DOI:10.1016/j.jcis.2007.06.06810.1016/j.jcis.2007.06.068Search in Google Scholar PubMed
[19] D.Motlagh, J. Allen, R. Hoshi, J. Yang, K. Lui, G. Ameer: J. Biomed. Mater. Res. A, 82 (2007) 907. DOI:10.1002/jbm.a.3121110.1002/jbm.a.31211Search in Google Scholar PubMed
[20] R.M. Silverstein, F.X. Webster: Sixth ed. John Wiley Pub. Wiley India Pvt. Ltd. (2006) 88.Search in Google Scholar
[21] C. Khatri, A. Rani: Fuel. 87 (2008) 2886. DOI:10.1016/j.fuel.2008.04.01110.1016/j.fuel.2008.04.011Search in Google Scholar
[22] A. Karaipekli, A. Biçer, A. Sarı, V.V. Tyagi: Energy Convers. Manag. 134 15 (2017) 373. DOI:10.1016/j.enconman.2016.12.05310.1016/j.enconman.2016.12.053Search in Google Scholar
[23] S. Kabra, A. Sharma, S. Katara, R. Hada, A. Rani: Indian J. Appl. Res. 3 4 (2013) 40.10.15373/2249555X/APR2013/13Search in Google Scholar
[24] S.H. Javed, S. Naveed, N. Feroze, M. Zafar, M. Shafaq: J. of Quality and Technology Management. 6 1 (2010) 81.Search in Google Scholar
[25] D. Kadam, B. Momin, S. Palamthodi, S.S. Lele: Carbohydr: Polym. 211 (2019) 124. DOI:10.1016/j.carbpol.2019.02.00510.1016/j.carbpol.2019.02.005Search in Google Scholar
[26] D.D.L. Chung: Science and Applications 2nd Ed. P.B. Derby London: Springer-Verlag. (2010).Search in Google Scholar
[27] J.W. Rhim: Carbohydr: Polym. 86 2 (2011) 691. DOI:10.1016/j.carbpol.2011.05.01010.1016/j.carbpol.2011.05.010Search in Google Scholar
[28] H. Nolte, C. Schilde, A. Kwade: Compos. Sci. Technol. 72 9 (2012) 948. DOI:10.1016/j.compscitech.2012.03.01010.1016/j.compscitech.2012.03.010Search in Google Scholar
[29] P.Z. Hong, S.D. Li, C.Y. Ou, C.P. Li, L. Yang, C.H. Zhang: J. Appl. Polym. Sci. 105 (2007) 547. DOI:10.1002/app.2592010.1002/app.25920Search in Google Scholar
[30] J. Ratto, T. Hatakeyama, R.B. Blumstein: Polymer. 36 15 (1995) 2915. DOI:10.1016/0032-3861(95)94340-Y10.1016/0032-3861(95)94340-YSearch in Google Scholar
[31] K. Sakurai, T. Maegawa, T. Takahashi: Polymer.41 19 (2000) 7051. DOI:10.1016/S0032-3861(00)00067-710.1016/S0032-3861(00)00067-7Search in Google Scholar
[32] F. Kittur, K.H. Prashanth, K.U. Sankar, R. Tharanathan: Carbohydr: Polym. 49 2 (2002) 185. DOI:10.1016/S0144-8617(01)00320-410.1016/S0144-8617(01)00320-4Search in Google Scholar
[33] U. Ajdnik, M. Finsgar, L.F. Zemljic: Carbohydr: Polym. 232 (2020) 115817. DOI:10.1016/j.carbpol.2019.11581710.1016/j.carbpol.2019.115817Search in Google Scholar PubMed
[34] G.M. Shanthini, C. Ann, N. Sakthivel, S. Chandra, K. Elayaraja, B.S. Lakshmi, K. Asokan, D. Kanjilal, S.N. Kalkura: Appl. Surf. Sci. 329 (2015) 116. DOI:10.1016/j.apsusc.2014.12.12910.1016/j.apsusc.2014.12.129Search in Google Scholar
[35] M.A. Rahman, B. Ochiai: Microsyst. Technol. 24 (2018) 669. DOI:10.1007/s00542-017-3318-810.1007/s00542-017-3318-8Search in Google Scholar
[36] J.P. Singhal, A.R. Ray: Biometarials. 23 4 (2002) 1139. DOI:10.1016/s0142-9612(01)00228-910.1016/s0142-9612(01)00228-9Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Original Contributions
- A multiscale mean field model for elastic properties of hypereutectoid pearlitic steels with different microstructures
- Refining performance and recession of Al–TiO2–C–La2O3 refiners
- Abrasive wear response of Al-Si–SiCp composite: Effect of friction heat and friction coefficient
- Thermodynamic assessment of the Sb–S and In–S binary systems
- Increased coercivity in recalcined barium ferrite–magnetite nanocomposites
- Reporting the magnetic profile of cobalt ferrite nanoparticles at different temperatures
- Fabrication of monoclinic BiVO4 photocatalyst film and its photocatalytic activity for organic pollutant removal
- Characterization and thermal properties of chitosan/perlite nanocomposites
- STEM investigations of the influence of copper on alumina scale detachment during in-situ wetting experiments of Al-7Si-0.3Mg alloy with 95Sn-5Cu filler metal
- Short Communications
- Microstructure and mechanical properties of laser welded titanium alloy and stainless steel joint with composite interlayer
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Original Contributions
- A multiscale mean field model for elastic properties of hypereutectoid pearlitic steels with different microstructures
- Refining performance and recession of Al–TiO2–C–La2O3 refiners
- Abrasive wear response of Al-Si–SiCp composite: Effect of friction heat and friction coefficient
- Thermodynamic assessment of the Sb–S and In–S binary systems
- Increased coercivity in recalcined barium ferrite–magnetite nanocomposites
- Reporting the magnetic profile of cobalt ferrite nanoparticles at different temperatures
- Fabrication of monoclinic BiVO4 photocatalyst film and its photocatalytic activity for organic pollutant removal
- Characterization and thermal properties of chitosan/perlite nanocomposites
- STEM investigations of the influence of copper on alumina scale detachment during in-situ wetting experiments of Al-7Si-0.3Mg alloy with 95Sn-5Cu filler metal
- Short Communications
- Microstructure and mechanical properties of laser welded titanium alloy and stainless steel joint with composite interlayer
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society