Home Technology Effect of pulsed magneto oscillation and phosphorus on microstructure and tensile properties of as-cast Al-25% Si alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of pulsed magneto oscillation and phosphorus on microstructure and tensile properties of as-cast Al-25% Si alloy

  • Bo Dang , Zengyun Jian EMAIL logo and Junfeng Xu
Published/Copyright: April 20, 2021

Abstract

The effect of pulsed magneto oscillation (PMO) on the microstructure and tensile properties of Al-25% Si alloys with and without phosphorus addition was investigated. When PMO was applied to the melt during solidification, the results show that the PMO treatment is an effective method for refining the primary Si of Al-25% Si alloy with and without phosphorus addition. The morphology of primary Si was considerably refined via coarse dendritic and polygon shape to fine and regular block under the PMO treatment, and the average size of primary Si was refined to 30.8 μm and 45.3 μm under the optimal processing conditions for the alloy with and without phosphorus addition, respectively. The tensile strength and elongation of the alloys first increased and then decreased with rise of current. Analysis shows that application of PMO decreases Gibbs free energy and critical nucleus radius of the Al-25% Si alloy during solidification. The nucleation rate first increased and then decreased with increasing PMO intensity. The variation tendency of average number of primary Si per unit area is consistent with the theory analysis.


Prof. Zengyun Jian The Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices Xi’an Technological University Xuefu Middle Road No. 2 Xi’an Shaanxi 710021 P. R. China Tel.: +86-29-86173323 Fax: +86-29-86173323

References

[1] K. Wang, X. Lv, Y.M. Zhu, H.Y. Jiang, Q.D. Wang, B. Ye, W.D. Ding: Mater. Charact. 157 (2019) 109900. DOI:10.1016/j.matchar.2019.10990010.1016/j.matchar.2019.109900Search in Google Scholar

[2] Y.H. Zhang, C.Y. Ye, Y.Y. Xu, H.G. Zhong, X.R. Chen, X.C. Miao, C.J. Song, Q.J. Zhai: Metals 7 (2017) 184. DOI:10.3390/met706018410.3390/met7060184Search in Google Scholar

[3] J.H. Jeon, J.H. Shin, D.H. Bae: Mat. Sci. Eng. A 748 (2019) 367. DOI:10.1016/j.msea.2019.01.11910.1016/j.msea.2019.01.119Search in Google Scholar

[4] W.H. Yu, Y. Zhang, T.L. Yan, Y. Liu, A.L. Jiang, H.L. Zheng, X.L. Tian: J. Alloys Compd. 693 (2017) 303. DOI:10.1016/j.jallcom.2016.09.18810.1016/j.jallcom.2016.09.188Search in Google Scholar

[5] Q.C. Zou, N. Han, Z.X. Zhang, J.C. Jie, F. Xu, X.Z. An: Metals 10 (2020) 155. DOI:10.3390/met1001015510.3390/met10010155Search in Google Scholar

[6] T. Jiang, S.J. Li, C. Yu, J.Y. Fu, B.W. Wei, L.L. Luo, G.M. Xu: J. Mater. Sci. 30 (2019) 6786. DOI:10.1007/s10854-019-00990-110.1007/s10854-019-00990-1Search in Google Scholar

[7] Q.L. Li, B.Q. Li, J.B. Li, Y.Q. Zhu, T.D. Xia: Mater. Sci. Eng. A 722 (2018) 47. DOI:10.1016/j.msea.2018.03.01510.1016/j.msea.2018.03.015Search in Google Scholar

[8] J.F. Nie, Y.H. Zhao, Y.S. Li, F. Wang, H.B. Yang, K.Q. Hu, G.L. Liu, X.F. Liu: J. Alloys Compd. 777 (2019) 8. DOI:10.1016/j.jallcom.2018.09.03810.1016/j.jallcom.2018.09.038Search in Google Scholar

[9] C.L. Xu, Q.C. Jiang: Mater. Sci. Eng. A 437 (2006) 451. DOI:10.1016/j.msea.2006.07.08810.1016/j.msea.2006.07.088Search in Google Scholar

[10] N. Li, L.M. Zhang, R. Zhang, P.F. Yin, H. Xing, H.J. Wu: Metals 9 (2019) 571. DOI:10.3390/met905057110.3390/met9050571Search in Google Scholar

[11] S.D. Hu, Y.C. Dai, A. Gagnoud, Y. Fautrelle, R. Moreau, Z.M. Ren, K. Deng, C.J. Li, X. Li: J. Alloys Compd. 722 (2017) 108. DOI:10.1016/j.jallcom.2017.06.08410.1016/j.jallcom.2017.06.084Search in Google Scholar

[12] X.Y. Wu, H.R. Zhang, H.T. Jiang, Z.L. Mi, H. Zhang: Metals 10 (2020) 621. DOI:10.3390/met1005062110.3390/met10050621Search in Google Scholar

[13] A.K. Dahle, K. Nogita, S.D. McDonald, Z.W. Zindel, L.M. Hogan: Metall. Mater. Trans. A 32 (2001) 949. DOI:10.1007/s11661-001-0352-y10.1007/s11661-001-0352-ySearch in Google Scholar

[14] Q.L. Li, T.D. Xia, Y.F. Lan, P.F. Li, L. Fan: Mater. Sci. Eng. A 588 (2013) 97. DOI:10.1016/j.msea.2013.09.01710.1016/j.msea.2013.09.017Search in Google Scholar

[15] X. Chen, Y.B. Zhong, T.X. Zheng, Z. Shen, J. Wang, L.J. Fan, Y. Zhai, M.H. Peng, B.F. Zhou, W.L. Ren, Z.S. Lei, Z.M. Ren, Q. He: J. Alloys Compd. 714 (2017) 39. DOI:10.1016/j.jallcom.2017.04.08510.1016/j.jallcom.2017.04.085Search in Google Scholar

[16] Y.J. Li, X.P. Ma, Y.S. Yang: Trans. Nonferr. Metal. Soc. 21 (2011) 1277. DOI:10.1016/s1003-6326(11)60853-410.1016/s1003-6326(11)60853-4Search in Google Scholar

[17] B. Wang, Y.S. Yang, J.X. Zhou, W.H. Tong: Trans. Nonferr. Metal. Soc. 18 (2008) 536. DOI:10.1016/s1003-6326(09)60358-710.1016/s1003-6326(09)60358-7Search in Google Scholar

[18] L. Zhang, W. Li, J.P. Yao, H. Qiu: Mater. Lett. 66 (2012) 190. DOI:10.1016/j.matlet.2011.08.00110.1016/j.matlet.2011.08.001Search in Google Scholar

[19] Y.Y. Gong, J. Luo, J.X. Jing, Z.Q. Xia, Q.J. Zhai: Mater. Sci. Eng. A 497 (2008) 147. DOI:10.1016/j.msea.2008.06.02710.1016/j.msea.2008.06.027Search in Google Scholar

[20] D. Liang, Z.Y. Liang, Q.J. Zhai, G. Wang, D.H. StJohn: Mater. Lett. 130 (2014) 48. DOI:10.1016/j.matlet.2014.05.05810.1016/j.matlet.2014.05.058Search in Google Scholar

[21] Z.X. Yin, Y.Y. Gong, B. Li, Y.F. Cheng, D. Liang, Q.J. Zhai: J. Mater. Process. Technol. 212 (2012) 2629. DOI:10.1016/j.jmatprotec.2012.07.01310.1016/j.jmatprotec.2012.07.013Search in Google Scholar

[22] J. Zhao, Y.F. Cheng, K. Han, X.Z. Zhang, Z.S. Xu, Q.J. Zhai: J. Mater. Process. Technol. 229 (2016) 286. DOI:10.1016/j.jmatprotec.2015.09.02710.1016/j.jmatprotec.2015.09.027Search in Google Scholar

[23] I. Edry, N. Frage, S. Hayun: Mater. Lett. 182 (2016) 118. DOI:10.1016/j.matlet.2016.06.10610.1016/j.matlet.2016.06.106Search in Google Scholar

[24] W. Yan, W.Q. Chen, S.L. Zhang, B. Li, J. Li: Mater. Charact. 157 (2019) 109894. DOI:10.1016/j.matchar.2019.10989410.1016/j.matchar.2019.109894Search in Google Scholar

[25] C.R. Ho, B. Cantor: Acta Metall. Mater. 43 (1995) 3231. DOI:10.1016/0956-7151(94)00480-610.1016/0956-7151(94)00480-6Search in Google Scholar

[26] Q. Ma: Acta Mater. 55 (2007) 943. DOI:10.1016/j.actamat.2006.09.01610.1016/j.actamat.2006.09.016Search in Google Scholar

[27] X.L. Liao, Q.J. Zhai, J. Luo, W.J. Chen, Y.Y. Gong: Acta Mater. 55 (2007) 3103. DOI:10.1016/j.actamat.2007.01.01410.1016/j.actamat.2007.01.014Search in Google Scholar

[28] I. Edry, T. Mordechai, N. Frage, S. Hayun: Metall. Mater. Trans. A 47A (2016) 1261. DOI:10.1007/s11661-015-3306-510.1007/s11661-015-3306-5Search in Google Scholar

[29] I. Edry, V. Erukhimovitch, A. Shoihet, Y. Mordekovitz, N. Frage, S. Hayun: J. Mater. Sci. 48 (2013) 8438. DOI:10.1007/s10853-013-7656-310.1007/s10853-013-7656-3Search in Google Scholar

[30] C.Y. Ban, Y. Han, Q.X. Ba, J.Z. Cui: Mater. Sci. Forum 546 (2007) 723. DOI:10.4028/0-87849-432-4.72310.4028/0-87849-432-4.723Search in Google Scholar

[31] C.J. Li, L. Chen, Z.M. Ren: J. Mol. Liq. 181 (2013) 51. DOI:10.1016/j.molliq.2013.02.01010.1016/j.molliq.2013.02.010Search in Google Scholar

[32] S. Chikazumi: Handbook of Magnetic Materials, Metallurgical Industry Press, Beijing (1984).Search in Google Scholar

[33] Q.J. Zhai: Foundamentals of structure refinement technology for metal solidification, Science Press, Beijing (2018).Search in Google Scholar

[34] H. Lescuyer, M. Allibert, G. Laslaz: J. Alloys Compd. 279 (1998) 237. DOI:10.1016/S0925-8388(98)00686-010.1016/S0925-8388(98)00686-0Search in Google Scholar

Received: 2020-10-18
Accepted: 2021-02-06
Published Online: 2021-04-20
Published in Print: 2021-04-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 2.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-8122/pdf
Scroll to top button