Abstract
The effect of pulsed magneto oscillation (PMO) on the microstructure and tensile properties of Al-25% Si alloys with and without phosphorus addition was investigated. When PMO was applied to the melt during solidification, the results show that the PMO treatment is an effective method for refining the primary Si of Al-25% Si alloy with and without phosphorus addition. The morphology of primary Si was considerably refined via coarse dendritic and polygon shape to fine and regular block under the PMO treatment, and the average size of primary Si was refined to 30.8 μm and 45.3 μm under the optimal processing conditions for the alloy with and without phosphorus addition, respectively. The tensile strength and elongation of the alloys first increased and then decreased with rise of current. Analysis shows that application of PMO decreases Gibbs free energy and critical nucleus radius of the Al-25% Si alloy during solidification. The nucleation rate first increased and then decreased with increasing PMO intensity. The variation tendency of average number of primary Si per unit area is consistent with the theory analysis.
References
[1] K. Wang, X. Lv, Y.M. Zhu, H.Y. Jiang, Q.D. Wang, B. Ye, W.D. Ding: Mater. Charact. 157 (2019) 109900. DOI:10.1016/j.matchar.2019.10990010.1016/j.matchar.2019.109900Search in Google Scholar
[2] Y.H. Zhang, C.Y. Ye, Y.Y. Xu, H.G. Zhong, X.R. Chen, X.C. Miao, C.J. Song, Q.J. Zhai: Metals 7 (2017) 184. DOI:10.3390/met706018410.3390/met7060184Search in Google Scholar
[3] J.H. Jeon, J.H. Shin, D.H. Bae: Mat. Sci. Eng. A 748 (2019) 367. DOI:10.1016/j.msea.2019.01.11910.1016/j.msea.2019.01.119Search in Google Scholar
[4] W.H. Yu, Y. Zhang, T.L. Yan, Y. Liu, A.L. Jiang, H.L. Zheng, X.L. Tian: J. Alloys Compd. 693 (2017) 303. DOI:10.1016/j.jallcom.2016.09.18810.1016/j.jallcom.2016.09.188Search in Google Scholar
[5] Q.C. Zou, N. Han, Z.X. Zhang, J.C. Jie, F. Xu, X.Z. An: Metals 10 (2020) 155. DOI:10.3390/met1001015510.3390/met10010155Search in Google Scholar
[6] T. Jiang, S.J. Li, C. Yu, J.Y. Fu, B.W. Wei, L.L. Luo, G.M. Xu: J. Mater. Sci. 30 (2019) 6786. DOI:10.1007/s10854-019-00990-110.1007/s10854-019-00990-1Search in Google Scholar
[7] Q.L. Li, B.Q. Li, J.B. Li, Y.Q. Zhu, T.D. Xia: Mater. Sci. Eng. A 722 (2018) 47. DOI:10.1016/j.msea.2018.03.01510.1016/j.msea.2018.03.015Search in Google Scholar
[8] J.F. Nie, Y.H. Zhao, Y.S. Li, F. Wang, H.B. Yang, K.Q. Hu, G.L. Liu, X.F. Liu: J. Alloys Compd. 777 (2019) 8. DOI:10.1016/j.jallcom.2018.09.03810.1016/j.jallcom.2018.09.038Search in Google Scholar
[9] C.L. Xu, Q.C. Jiang: Mater. Sci. Eng. A 437 (2006) 451. DOI:10.1016/j.msea.2006.07.08810.1016/j.msea.2006.07.088Search in Google Scholar
[10] N. Li, L.M. Zhang, R. Zhang, P.F. Yin, H. Xing, H.J. Wu: Metals 9 (2019) 571. DOI:10.3390/met905057110.3390/met9050571Search in Google Scholar
[11] S.D. Hu, Y.C. Dai, A. Gagnoud, Y. Fautrelle, R. Moreau, Z.M. Ren, K. Deng, C.J. Li, X. Li: J. Alloys Compd. 722 (2017) 108. DOI:10.1016/j.jallcom.2017.06.08410.1016/j.jallcom.2017.06.084Search in Google Scholar
[12] X.Y. Wu, H.R. Zhang, H.T. Jiang, Z.L. Mi, H. Zhang: Metals 10 (2020) 621. DOI:10.3390/met1005062110.3390/met10050621Search in Google Scholar
[13] A.K. Dahle, K. Nogita, S.D. McDonald, Z.W. Zindel, L.M. Hogan: Metall. Mater. Trans. A 32 (2001) 949. DOI:10.1007/s11661-001-0352-y10.1007/s11661-001-0352-ySearch in Google Scholar
[14] Q.L. Li, T.D. Xia, Y.F. Lan, P.F. Li, L. Fan: Mater. Sci. Eng. A 588 (2013) 97. DOI:10.1016/j.msea.2013.09.01710.1016/j.msea.2013.09.017Search in Google Scholar
[15] X. Chen, Y.B. Zhong, T.X. Zheng, Z. Shen, J. Wang, L.J. Fan, Y. Zhai, M.H. Peng, B.F. Zhou, W.L. Ren, Z.S. Lei, Z.M. Ren, Q. He: J. Alloys Compd. 714 (2017) 39. DOI:10.1016/j.jallcom.2017.04.08510.1016/j.jallcom.2017.04.085Search in Google Scholar
[16] Y.J. Li, X.P. Ma, Y.S. Yang: Trans. Nonferr. Metal. Soc. 21 (2011) 1277. DOI:10.1016/s1003-6326(11)60853-410.1016/s1003-6326(11)60853-4Search in Google Scholar
[17] B. Wang, Y.S. Yang, J.X. Zhou, W.H. Tong: Trans. Nonferr. Metal. Soc. 18 (2008) 536. DOI:10.1016/s1003-6326(09)60358-710.1016/s1003-6326(09)60358-7Search in Google Scholar
[18] L. Zhang, W. Li, J.P. Yao, H. Qiu: Mater. Lett. 66 (2012) 190. DOI:10.1016/j.matlet.2011.08.00110.1016/j.matlet.2011.08.001Search in Google Scholar
[19] Y.Y. Gong, J. Luo, J.X. Jing, Z.Q. Xia, Q.J. Zhai: Mater. Sci. Eng. A 497 (2008) 147. DOI:10.1016/j.msea.2008.06.02710.1016/j.msea.2008.06.027Search in Google Scholar
[20] D. Liang, Z.Y. Liang, Q.J. Zhai, G. Wang, D.H. StJohn: Mater. Lett. 130 (2014) 48. DOI:10.1016/j.matlet.2014.05.05810.1016/j.matlet.2014.05.058Search in Google Scholar
[21] Z.X. Yin, Y.Y. Gong, B. Li, Y.F. Cheng, D. Liang, Q.J. Zhai: J. Mater. Process. Technol. 212 (2012) 2629. DOI:10.1016/j.jmatprotec.2012.07.01310.1016/j.jmatprotec.2012.07.013Search in Google Scholar
[22] J. Zhao, Y.F. Cheng, K. Han, X.Z. Zhang, Z.S. Xu, Q.J. Zhai: J. Mater. Process. Technol. 229 (2016) 286. DOI:10.1016/j.jmatprotec.2015.09.02710.1016/j.jmatprotec.2015.09.027Search in Google Scholar
[23] I. Edry, N. Frage, S. Hayun: Mater. Lett. 182 (2016) 118. DOI:10.1016/j.matlet.2016.06.10610.1016/j.matlet.2016.06.106Search in Google Scholar
[24] W. Yan, W.Q. Chen, S.L. Zhang, B. Li, J. Li: Mater. Charact. 157 (2019) 109894. DOI:10.1016/j.matchar.2019.10989410.1016/j.matchar.2019.109894Search in Google Scholar
[25] C.R. Ho, B. Cantor: Acta Metall. Mater. 43 (1995) 3231. DOI:10.1016/0956-7151(94)00480-610.1016/0956-7151(94)00480-6Search in Google Scholar
[26] Q. Ma: Acta Mater. 55 (2007) 943. DOI:10.1016/j.actamat.2006.09.01610.1016/j.actamat.2006.09.016Search in Google Scholar
[27] X.L. Liao, Q.J. Zhai, J. Luo, W.J. Chen, Y.Y. Gong: Acta Mater. 55 (2007) 3103. DOI:10.1016/j.actamat.2007.01.01410.1016/j.actamat.2007.01.014Search in Google Scholar
[28] I. Edry, T. Mordechai, N. Frage, S. Hayun: Metall. Mater. Trans. A 47A (2016) 1261. DOI:10.1007/s11661-015-3306-510.1007/s11661-015-3306-5Search in Google Scholar
[29] I. Edry, V. Erukhimovitch, A. Shoihet, Y. Mordekovitz, N. Frage, S. Hayun: J. Mater. Sci. 48 (2013) 8438. DOI:10.1007/s10853-013-7656-310.1007/s10853-013-7656-3Search in Google Scholar
[30] C.Y. Ban, Y. Han, Q.X. Ba, J.Z. Cui: Mater. Sci. Forum 546 (2007) 723. DOI:10.4028/0-87849-432-4.72310.4028/0-87849-432-4.723Search in Google Scholar
[31] C.J. Li, L. Chen, Z.M. Ren: J. Mol. Liq. 181 (2013) 51. DOI:10.1016/j.molliq.2013.02.01010.1016/j.molliq.2013.02.010Search in Google Scholar
[32] S. Chikazumi: Handbook of Magnetic Materials, Metallurgical Industry Press, Beijing (1984).Search in Google Scholar
[33] Q.J. Zhai: Foundamentals of structure refinement technology for metal solidification, Science Press, Beijing (2018).Search in Google Scholar
[34] H. Lescuyer, M. Allibert, G. Laslaz: J. Alloys Compd. 279 (1998) 237. DOI:10.1016/S0925-8388(98)00686-010.1016/S0925-8388(98)00686-0Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Contents
- Improving the mechanical performance of a resistance spot welded 1200 MPa TBF steel
- The significance of microstructural evolution on governing impact toughness of Fe-0.2C-6Mn-3Al medium-Mn TRIP steel studied by a novel heat treatment
- Microstructure, phase relationships and microhardness of Fe60Al40–nHfn alloys (n = 1, 3, and 5 at.%)
- Effect of ultrasonic melt treatment on the microstructure and tensile properties of Al-25% Si alloy assisted by phosphorus addition
- Effect of pulsed magneto oscillation and phosphorus on microstructure and tensile properties of as-cast Al-25% Si alloy
- Formation of boride layers on a commercially pure Ti surface produced via powder metallurgy
- Microstructure and polarization behavior of Ni/WC+GO (graphene oxide) composite cladding fusion coating
- Effect of coating parameters on microstructure, corrosion behavior, hardness and formability of hot-dip Galfan and galvanized coatings
- Optimization and kinetic studies on cationic dye adsorption using textile yarn waste/Multiwall carbon nanotube nanofibrous composites
- Erratum
- Glass formation, magnetic properties, and electrical resistivity of the multi-component FeNbBCuNiCo amorphous alloys
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Articles in the same Issue
- Contents
- Improving the mechanical performance of a resistance spot welded 1200 MPa TBF steel
- The significance of microstructural evolution on governing impact toughness of Fe-0.2C-6Mn-3Al medium-Mn TRIP steel studied by a novel heat treatment
- Microstructure, phase relationships and microhardness of Fe60Al40–nHfn alloys (n = 1, 3, and 5 at.%)
- Effect of ultrasonic melt treatment on the microstructure and tensile properties of Al-25% Si alloy assisted by phosphorus addition
- Effect of pulsed magneto oscillation and phosphorus on microstructure and tensile properties of as-cast Al-25% Si alloy
- Formation of boride layers on a commercially pure Ti surface produced via powder metallurgy
- Microstructure and polarization behavior of Ni/WC+GO (graphene oxide) composite cladding fusion coating
- Effect of coating parameters on microstructure, corrosion behavior, hardness and formability of hot-dip Galfan and galvanized coatings
- Optimization and kinetic studies on cationic dye adsorption using textile yarn waste/Multiwall carbon nanotube nanofibrous composites
- Erratum
- Glass formation, magnetic properties, and electrical resistivity of the multi-component FeNbBCuNiCo amorphous alloys
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society