Home Technology Optimization and kinetic studies on cationic dye adsorption using textile yarn waste/Multiwall carbon nanotube nanofibrous composites
Article
Licensed
Unlicensed Requires Authentication

Optimization and kinetic studies on cationic dye adsorption using textile yarn waste/Multiwall carbon nanotube nanofibrous composites

  • Subramanian Swaminathan EMAIL logo , Nallammal Muthupaiyan Imayathamizhan , Andiyappan Muthumanickam and Pooncholai Moorthi
Published/Copyright: March 19, 2021

Abstract

Polyacrylonitrile yarn hard waste and multiwall carbon nano-tubes nanofibrous mat was prepared by the electrospinning technique. The nanofibrous composite mats were characterized using thermo-gravimetric analysis, Fourier transform infrared spectroscopy, FT-Raman, scanning electron microscopy, and X-ray diffraction. Adsorption studies were conducted with various physical and chemical parameters such as contact time, solution pH and initial dye concentration. The maximum methylene blue dye removal efficiency of nanofibrous composite was found to be 73.4%at optimized pH 10. The pseudo-second order kinetics and Freundlich isotherm are suitable for methylene blue dye adsorption of nanofibrous composite.


Mr. S. Swaminathan Research scholar Department of Textile Technology Anna University Chennai-600025 India. Tel.: +91 44-22359255

Nomenclature

Q0, b-

Langmuir isotherm constant (l/mg)

C0-

initial liquid-phase concentration (mg/l)

Ce-

equilibrium liquid-phase concentration (mg/l)

Kf-

Freundlich isotherm constant (l/mg)

KL-

Scatchard isotherm constant (l/mg)

N-

Freundlich isotherm constant

qe-

equilibrium uptake capacity (mg/g)

K1-

pseudo first order rate constant (min–1)

K2-

pseudo second order rate constant (g/mg min)

Kext-

external diffusion constant (min)

RL-

dimensionless constant separation factor

References

[1] E. Repo, T.A. Kurniawan, J.K. Warchol, M.E.T. Sillanpaa: Chem. Eng. J. 161 (2010) 73. DOI:10.1016/J.CEJ.2010.04.03010.1016/J.CEJ.2010.04.030Search in Google Scholar

[2] M.X. Lai, G. Luo: Sepa. Purif. Technol. 54 (2018) 1269. DOI:10.1080/01496395.2018.153560510.1080/01496395.2018.1535605Search in Google Scholar

[3] V.K. Gupta, A. Mittal, L. Krishnan, V. Gajbe: Sepa. Purif. Technol. 40 (2004) 87. DOI:10.1016/j.seppur.2004.01.00810.1016/j.seppur.2004.01.008Search in Google Scholar

[4] S. Nethaji, A. Sivasamy, A.B. Mandal: Int. J. Environ. Sci. Technol. 10 (2013) 231. DOI:10.1007/s13762-012-0112-010.1007/s13762-012-0112-0Search in Google Scholar

[5] B.K. Avasarala, S.R. Tirukkovalluri, S. Bojja: Int. J. Mater. Res. 101 (2010) 1563. 10.3139/146.110438.DOI:10.3139/146.11043810.3139/146.110438Search in Google Scholar

[6] G. Baskar, S.K. Pavithraa, K. Sheraz Fahada, S. Renganathan: Desalin. Water Treat. 52 (2014) 3547. DOI:10.1080/19443994.2013.80365410.1080/19443994.2013.803654Search in Google Scholar

[7] G. McKay: J. Chem. Technol. Biotechnol.32 (1982) 759. DOI:10.1002/jctb.503032071210.1002/jctb.5030320712Search in Google Scholar

[8] D.K. Bakshi, K.G. Gupta, P.J. Sharma: Microbiol. Biotechnol. 15 (1999) 507. DOI:10.1023/a:100897451378510.1023/a:1008974513785Search in Google Scholar

[9] R. Das, S.B.A. Hamid, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna: Desalination.160 (2014) 160. DOI:10.1016/j.desal.2014.09.03210.1016/j.desal.2014.09.032Search in Google Scholar

[10] R. Atchudan, B.G. Cha, N. Lone, J. Kim, J. Joo: Korean J Chem Eng, 36 (2019) 157. DOI:10.1007/s11814-018-0200-z10.1007/s11814-018-0200-zSearch in Google Scholar

[11] S. Iijima: Nature, 354(1991) 56. DOI:10.1038/354056010.1038/3540560Search in Google Scholar

[12] F. Yu, Y. Wu, J. Ma: J. Hazard Mater. 237 (2012) 102. DOI:10.1016/j.jhazmat.2012.07.05910.1016/j.jhazmat.2012.07.059Search in Google Scholar PubMed

[13] R. Atchudan, S. Perumal, T.N.J.I. Edison, A. Pandurangan, Y.R. Lee: Physica E, 74 (2015) 355. DOI:10.1016/j.physe.2015.07.02110.1016/j.physe.2015.07.021Search in Google Scholar

[14] J.L. Gong, B. Wang, G.M. Zeng, C.P.Yang, C.G. Niu, Q.Y. Niu, W.J. Zhou, Y. Liang: J. Hazard. Mater. 164 (2009) 1517. DOI:10.1016/j.jhazmat.2008.09.07210.1016/j.jhazmat.2008.09.072Search in Google Scholar PubMed

[15] J. Wang, K. Pan, Q. He, B. Cao: J. Hazard. Mater. 244 (2013) 121. DOI:10.1016/j.jhazmat.2012.11.02010.1016/j.jhazmat.2012.11.020Search in Google Scholar PubMed

[16] R. Atchudan, J. Jooa A. Pandurangan: Mater. Res. Bull. 48 (2013) 2205. DOI:org/10.1016/j.materresbull.2013.02.048. DOI:10.1016/j.materresbull.2013.02.04810.1016/j.materresbull.2013.02.048Search in Google Scholar

[17] A. Almasia, M.E. Olya, N.M. Mahmoodi: J. Indust. Eng. Chem. 32 (2015) 85. DOI:10.1016/j.jiec.2015.08.00210.1016/j.jiec.2015.08.002Search in Google Scholar

[18] W. Fu, Y. Dai, J. Tian, C. Huang, Z. Liu, K. Liu, L. Yin, F. Huang, Y. Lu, Y. Sun: Nanotechnol. 29 (2018) 345. DOI:10.1088/1361-6528/aac9ab10.1088/1361-6528/aac9abSearch in Google Scholar PubMed

[19] B.J. Xin, W. Chen: J. Eng. Fibers Fabr. 10 (2015) 42. DOI.org/10.1177/155892501501000105.DOI:10.1177/15589250150100010510.1177/155892501501000105Search in Google Scholar

[20] Y. Song, Z. Sun, L. Xu, Z. Shao: Polymers, 9 (2017) 1. DOI:10.3390/polym901000110.3390/polym9010001Search in Google Scholar PubMed PubMed Central

[21] O. Eren, N. Ucar, A. Onen, N. Kizildag, I. Karacan: J. Compos. Mater. 50 (2015) 2073. DOI:10.1177/002199831560189110.1177/0021998315601891Search in Google Scholar

[22] Z.S. Wu, Z. Feng, H. Xiaoxiao, Y. Xiaoping: Adv. Mater. Res. 47 (2008) 1169. DOI:10.4028/www.scientific.net/AMR.47-50.116910.4028/www.scientific.net/AMR.47-50.1169Search in Google Scholar

[23] P. Potschke, H. Brunig, A. Janke, D. Fischer, D. Jehnichen: Polymer 46 (2005) 10355. DOI:10.1016/j.polymer.2005.07.10610.1016/j.polymer.2005.07.106Search in Google Scholar

[24] H. Yuh-Shan: Scientometrics. 59 (2004) 171. DOI:10.1023/B:SCIE.0000013305.99473.cf10.1023/B:SCIE.0000013305.99473.cfSearch in Google Scholar

[25] T.J. Xue, M.A. McKinney, C.A. Wilkie: Polym. Degrad. Stab. 58 (1997) 193. DOI:10.1016/S0141-3910(97)00048-710.1016/S0141-3910(97)00048-7Search in Google Scholar

[26] I.A. Tan, A.L. Ahmad, B.H. Hamee: J. Hazard. Mater. 154 (2008) 337. DOI:10.1016/j.jhazmat.2007.10.03110.1016/j.jhazmat.2007.10.031Search in Google Scholar PubMed

[27] B.K. Nandi, A. Goswami, M.K. Purkait: Appl. Clay Sci. 42 (2009) 583. DOI:10.1016/j.clay.2008.03.01510.1016/j.clay.2008.03.015Search in Google Scholar

[28] B.H. Hameed, D.K. Mahmoud, A.L. Ahmad: J. Hazard. Mater. 158 (2008) 65. DOI:10.1016/j.jhazmat.2008.01.03410.1016/j.jhazmat.2008.01.034Search in Google Scholar PubMed

[29] Y.S. Ho, G. McKay: Proces. Biochem. 34 (1999) 451. DOI:10.1016/S0032-9592(98)00112-510.1016/S0032-9592(98)00112-5Search in Google Scholar

[30] W. Weber, J. Morris: Am. Soc. Civil Eng. 89 (2013) 31. DOI:10.12691/env-1-1-110.12691/env-1-1-1Search in Google Scholar

[31] I. Langmuir: J. Am. Chem. Soc. 40 (1918) 1361. DOI:10.1021/ja02242a00410.1021/ja02242a004Search in Google Scholar

[32] C.H. Liu, J.S. Wu, H.C. Chiu, S.Y. Suen, K.H. Chu: Wate. Res. 41 (2007) 1491. DOI:10.1016/j.watres.2007.01.02310.1016/j.watres.2007.01.023Search in Google Scholar PubMed

[33] H. Freundlich: J. PhyS. Chem. 57 (1906) 385. DOI:10.1515/zpch-1907-572310.1515/zpch-1907-5723Search in Google Scholar

[34] Y.S. Ho, G. McKay: Chem. Eng. J. 70 (1998) 115. DOI:10.1016/S0923-0467(98)00076-110.1016/S0923-0467(98)00076-1Search in Google Scholar

Received: 2020-05-29
Accepted: 2020-11-27
Published Online: 2021-03-19
Published in Print: 2021-04-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 31.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2020-7922/html
Scroll to top button