The effect of SiC nanoparticles and sintering temperature on the structural and wear properties of Cu–MWCNTs–SiC hybrid nanocomposites
Abstract
SiC nanoparticles play an important role in Cu–MWCNTs nanocomposites. So far, the effect of SiC volume fraction has not been considered on the properties of Cu–MWCNTs–SiC hybrid nanocomposites. Copper-based hybrid nanocomposites with 2 vol.% carbon nanotubes and 1–3 vol.% SiC nanoparticles were prepared via powder metallurgy. The composite powders were compacted and then sintered at 850, 900 and 950 °C for 1 h. Increasing the volume fraction of SiC nanoparticles restricts the grain growth, decreases the friction coefficient, and increases the hardness and wear resistance of prepared nanocomposites. The coefficient of friction and wear rate of Cu–MWCNTs–SiC hybrid nanocomposites decreased with increasing SiC content. Nanocomposites sintered at 900 °C exhibited higher hardness and wear resistance compared to other samples. The highest hardness and wear resistance were related to the Cu-2 vol.% MWCNTs-3 vol.%SiC hybrid nanocomposite sintered at 900 °C, which shows approximately 24 and 78% improvement over the pure copper specimen, respectively. Wear resistance and hardness were reduced for samples sintered at 950 °C.
References
[1] M.R. Akbarpour, H. Mousa Mirabad, S. Alipour: Ceram. Int. 45 (2019) 3276. DOI:10.1016/j.ceramint.2018.10.23510.1016/j.ceramint.2018.10.235Suche in Google Scholar
[2] K.S. Prakash, T. Thankachan, R. Radhakrishnan: Trans. Nonferrous Met. Soc. China 27 (2017) 627. DOI:10.1016/S1003-6326(17)60070-010.1016/S1003-6326(17)60070-0Suche in Google Scholar
[3] K. Rajkumar, S. Aravindan: Tribol. Int. 44 (2011) 347. DOI:10.1016/j.triboint.2010.11.00810.1016/j.triboint.2010.11.008Suche in Google Scholar
[4] A.M. Sadoun, A. Fathy, A. Abu-Oqail, H.T. Elmetwaly, A. Wagih: Ceram. Int. 46 (2020) 7586. DOI:10.1016/j.ceramint.2019.11.25810.1016/j.ceramint.2019.11.258Suche in Google Scholar
[5] C. Ayyappadas, A. Muthuchamy, A. Raja Annamalai, D.K. Agrawal: Adv. Powder Technol. 28 (2017) 1760. DOI:10.1016/j.apt.2017.04.01310.1016/j.apt.2017.04.013Suche in Google Scholar
[6] H. Nautiyal, S. Kumari, O.P. Khatri, R. Tyagi: Compos. Part B Eng. (2019) 173 106931. DOI:10.1016/j.compositesb.2019.10693110.1016/j.compositesb.2019.106931Suche in Google Scholar
[7] R. Purohit, N.K. Solanki, G. Bajpayee, R.S. Rana, G. Hemath Kumar: Mater. Today Proc. 4 (2017) 3270. DOI:10.1016/j.matpr.2017.02.21310.1016/j.matpr.2017.02.213Suche in Google Scholar
[8] S.G. Sapate, A. Uttarwar, R.C. Rathod, R.K. Paretkar: Mater. Des. 30 (2009) 376. DOI:10.1016/j.matdes.2008.04.05510.1016/j.matdes.2008.04.055Suche in Google Scholar
[9] M.R. Akbarpour, S. Alipour, A. Safarzadeh, H.S. Kim: Compos. Part B Eng. 158 (2019) 92. DOI:10.1016/j.compositesb.2018.09.03910.1016/j.compositesb.2018.09.039Suche in Google Scholar
[10] V. Rajkovic, D. Bozic, J. Stasic, H. Wang, M.T. Jovanovic: Powder Technol. 268 (2014) 392. DOI:10.1016/j.powtec.2014.08.05110.1016/j.powtec.2014.08.051Suche in Google Scholar
[11] B. Duan, Y. Zhou, D. Wang, Y. Zhao: J. Alloys Compd. 771 (2019) 498. DOI:10.1016/j.jallcom.2018.08.31510.1016/j.jallcom.2018.08.315Suche in Google Scholar
[12] T. Varo, A. Canakci: Arab. J. Sci. Eng. 40 (2015) 2711. DOI:10.1007/s13369-015-1734-610.1007/s13369-015-1734-6Suche in Google Scholar
[13] R. Venkatesh, V.S. Rao: Def. Technol. 14 (2018) 346. DOI:10.1016/j.dt.2018.05.00310.1016/j.dt.2018.05.003Suche in Google Scholar
[14] Y. Zhan, G. Zhang: Mater. Des. 27 (2006) 79. DOI:10.1016/j.matdes.2004.08.01910.1016/j.matdes.2004.08.019Suche in Google Scholar
[15] C.S. Ramesh, R. Noor Ahmed, M.A. Mujeebu, M.Z. Abdullah: Mater. Des. 30 (2009) 1957. DOI:10.1016/j.matdes.2008.09.00510.1016/j.matdes.2008.09.005Suche in Google Scholar
[16] X. Chen, J. Tao, J. Yi, Y. Liu, C. Li, R. Bao: Mater. Sci. Eng. A 718 (2018) 427. DOI:10.1016/j.msea.2018.02.00610.1016/j.msea.2018.02.006Suche in Google Scholar
[17] H.M. Mallikarjuna, C.S. Ramesh, P.G. Koppad, R. Keshavamurthy, K.T. Kashyap: Trans. Nonferrous Met. Soc. China 26 (2016) 3170. DOI:10.1016/S1003-6326(16)64449-710.1016/S1003-6326(16)64449-7Suche in Google Scholar
[18] M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, A. Simchi, H.S. Kim: Mater. Sci. Eng. A 572 (2013) 83. DOI:10.1016/j.msea.2013.02.03910.1016/j.msea.2013.02.039Suche in Google Scholar
[19] Y. Zhan, G. Zhang: Tribol. Lett. 17 (2004) 91. DOI:10.1023/B:TRIL.0000017423.70725.1c10.1023/B:TRIL.0000017423.70725.1cSuche in Google Scholar
[20] H.M. Mallikarjuna, C.S. Ramesh, P.G. Koppad, R. Keshavamurthy, D. Sethuram: Vacuum 145 (2017) 320. DOI:10.1016/j.vacuum.2017.09.01610.1016/j.vacuum.2017.09.016Suche in Google Scholar
[21] H. Abdoos: Mech. Adv. Compos. Struct. 6 (2019) 181. DOI:10.22075/macs.2019.15402.115310.22075/macs.2019.15402.1153Suche in Google Scholar
[22] V.Y. Novikov: Mater. Lett. 62 (2008) 3748. DOI:10.1016/j.matlet.2008.04.04810.1016/j.matlet.2008.04.048Suche in Google Scholar
[23] S.R. Dong, J.P. Tu, X.B. Zhang: Mater. Sci. Eng. A 313 (2001) 83. DOI:10.1016/S0921-5093(01)00963-710.1016/S0921-5093(01)00963-7Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Original Contributions
- Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning
- Preparation of ZnO nanoflakes and assessment of their removal of HCN, NO2 and SO2 toxic gases
- Performance analysis and comparison of methyl-modified Al2O3/SiO2 xerogels fabricated by two methods
- The effect of SiC nanoparticles and sintering temperature on the structural and wear properties of Cu–MWCNTs–SiC hybrid nanocomposites
- Synthesis and characterization of Co–B–Fe–Ti nanosized alloyed powders
- Characterization of H13 steel powder oxidation at different temperatures
- Diffusion-alloying sintering of Cr–Mo pre-alloyed iron powders with carbon: The effect of the carbon introduction method on the sinter’s properties
- The effect of structure and texture on pure magnesium properties
- Mechanism of kink band formation in zinc single crystals
- Microstructural and fractographic analysis of A359/Si3N4 surface composite produced by friction stir processing
- Effect of heat treatment on the microstructure and properties of 25Cr2MoVA petroleum casing steel
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society
Artikel in diesem Heft
- Contents
- Original Contributions
- Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning
- Preparation of ZnO nanoflakes and assessment of their removal of HCN, NO2 and SO2 toxic gases
- Performance analysis and comparison of methyl-modified Al2O3/SiO2 xerogels fabricated by two methods
- The effect of SiC nanoparticles and sintering temperature on the structural and wear properties of Cu–MWCNTs–SiC hybrid nanocomposites
- Synthesis and characterization of Co–B–Fe–Ti nanosized alloyed powders
- Characterization of H13 steel powder oxidation at different temperatures
- Diffusion-alloying sintering of Cr–Mo pre-alloyed iron powders with carbon: The effect of the carbon introduction method on the sinter’s properties
- The effect of structure and texture on pure magnesium properties
- Mechanism of kink band formation in zinc single crystals
- Microstructural and fractographic analysis of A359/Si3N4 surface composite produced by friction stir processing
- Effect of heat treatment on the microstructure and properties of 25Cr2MoVA petroleum casing steel
- Notifications
- Deutsche Gesellschaft für Materialkunde / German Materials Science Society