Abstract
Nanocrystalline materials are polycrystals made up of nanometer-sized grains separated by a network of interfaces – grain or phase boundaries – that generally make a positive contribution to the total energy of the system. Consequently, there exists a thermodynamic driving force for reducing the overall interface area, which renders such systems intrinsically unstable against coarsening. The latter process entails interface migration and the concomitant deterioration of any property enhancements effected by the ultrafine grain size. We describe a strategy for significantly reducing or even eliminating the driving force for grain growth in nanocrystalline materials via the deliberate segregation of solute atoms into the core region of boundaries. Applied to Pd – Zr solid solutions containing up to 20 at.% Zr, the strategy yields nanocrystalline specimens manifesting an unusually high thermal stability with respect to grain growth, extending to the vicinity of the melting point. Parallels are drawn between the migration of grain boundaries in segregation-stabilized systems and antiphase domain boundaries in ordered alloys.
-
We are most grateful to J. Weissmüller for numerous fruitful discussions and to the Deutsche Forschungsgemeinschaft for financial support of this research through SFB 277 and a Habilitation fellowship (CEK).
References
[1] D. Weaire, N. Rivier: Contemp. Phys. 25 (1984) 59.10.1080/00107518408210979Suche in Google Scholar
[2] J.A. Glazier, D. Weaire: J. Phys. Condens. Matter 4 (1992) 1867.10.1088/0953-8984/4/8/004Suche in Google Scholar
[3] C.S. Smith, in: Metal Interfaces, American Society for Metals, Cleveland, OH, 1952, pp. 65–108.Suche in Google Scholar
[4] H.V. Atkinson: Acta metall. 36 (1988) 469.10.1016/0001-6160(88)90079-XSuche in Google Scholar
[5] H. Gleiter, in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, (North-Holland, Amsterdam, 1996), 4th ed., vol. I, chap. 9, pp. 843–942.10.1016/B978-044489875-3/50014-4Suche in Google Scholar
[6] D. Turnbull: Trans. AIME 191 (1951) 661.10.1007/BF03397362Suche in Google Scholar
[7] J.E. Burke, D. Turnbull: Prog. Metal Phys. 3 (1952) 220.10.1016/0502-8205(52)90009-9Suche in Google Scholar
[8] F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, 1996).10.1016/B978-0-08-041884-1.50017-9Suche in Google Scholar
[9] J.E. Taylor, J.W. Cahn, C.A. Handwerker: Acta metall. mater. 40 (1992) 1443.10.1016/0956-7151(92)90090-2Suche in Google Scholar
[10] J.E. Taylor: Acta metall. mater. 40 (1992) 1475.10.1016/0956-7151(92)90091-RSuche in Google Scholar
[11] G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications (CRC Press, Boca Raton, FL, 1999).Suche in Google Scholar
[12] L. Rathke, P.W. Voorhees: Growth and Coarsening (Springer, Berlin, 2002).10.1007/978-3-662-04884-9Suche in Google Scholar
[13] K. Lücke, K. Detert: Acta metall. 5 (1957) 628.10.1016/0001-6160(57)90109-8Suche in Google Scholar
[14] J.W. Cahn: Acta metall. 10 (1962) 789.10.1016/0001-6160(62)90092-5Suche in Google Scholar
[15] M. Hillert, B. Sundman: Acta metall. 24 (1976) 731.10.1016/0001-6160(76)90108-5Suche in Google Scholar
[16] M. Hillert: Acta mater. 47 (1999) 4481.10.1016/S1359-6454(99)00336-5Suche in Google Scholar
[17] J.W. Cahn, A. Novick-Cohen: Acta mater. 48 (2000) 3425.10.1016/S1359-6454(00)00144-0Suche in Google Scholar
[18] M.I. Mendelev, D.J. Srolovitz: Philos. Mag. A 80 (2001) 2243.10.1080/01418610108217146Suche in Google Scholar
[19] K. Boylan, D. Ostrander, U. Erb, G. Palumbo, K.T. Aust: Scripta metall. mater. 25 (1991) 2711.10.1016/0956-716X(91)90144-PSuche in Google Scholar
[20] D.G. Morris, M.A. Morris: Acta metall. mater. 39 (1991) 1763.10.1016/0956-7151(91)90144-PSuche in Google Scholar
[21] Y.R. Abe, J.C. Holzer, W.L. Johnson: Mater. Res. Soc. Symp. Proc. 238 (1992) 721.10.1557/PROC-238-721Suche in Google Scholar
[22] A.M. El-Sherik, K. Boylan, U. Erb, G. Palumbo, K.T. Aust: Mater. Res. Soc. Symp. Proc. 238 (1992) 727.10.1557/PROC-238-727Suche in Google Scholar
[23] Z. Gao, B. Fultz: Nanostruct. Mater. 2 (1993) 231.10.1016/0965-9773(93)90150-ASuche in Google Scholar
[24] P. Knauth, A. Charaï, P. Gas: Scripta metall. mater. 28 (1993) 325.10.1016/0956-716X(93)90436-VSuche in Google Scholar
[25] Z.Q. Gao, B. Fultz: Nanostruct. Mater. 4 (1994) 939.10.1016/0965-9773(94)90100-7Suche in Google Scholar
[26] C.D. Terwilliger, Y.-M. Chiang: Nanostruct. Mater. 4 (1994) 651.10.1016/0965-9773(94)90017-5Suche in Google Scholar
[27] K.J. Bryden, J.Y. Ying: Mater. Sci. Forum 225–227 (1996) 895.10.4028/www.scientific.net/MSF.225-227.895Suche in Google Scholar
[28] K.J. Bryden, J.Y. Ying: Acta mater. 44 (1996) 3847.10.1016/1359-6454(96)00020-1Suche in Google Scholar
[29] L.C. Chen, F. Spaepen: J. Appl. Phys. 69 (1991) 679.10.1063/1.347349Suche in Google Scholar
[30] L.E. Murr: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975), pp. 130–133.Suche in Google Scholar
[31] E.D. Hondros, M.P. Seah, S. Hofmann, P. LejČek, in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, (North-Holland, Amsterdam, 1996), 4th ed., vol. II, chap. 13, pp. 1201–1289.10.1016/B978-044489875-3/50018-1Suche in Google Scholar
[32] R. Birringer, presented at the conference Metastable Phase Formation in the Solid State, Irsee, Germany, July 1992 (unpublished).Suche in Google Scholar
[33] J. Weissmüller: Nanostruct. Mater. 3 (1993) 261.10.1016/0965-9773(93)90088-SSuche in Google Scholar
[34] J. Weissmüller: J. Mater. Res. 9 (1994) 4.10.1557/JMR.1994.0004Suche in Google Scholar
[35] C.E. Krill, H. Ehrhardt, R. Birringer, in: E. Ma, B. Fultz, R. Shull, J. Morral, P. Nash (Eds.), Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials, (TMS, Warrendale, PA, 1997), pp. 115 –124.Suche in Google Scholar
[36] R. Kirchheim: Acta mater. 50 (2002) 413.10.1016/S1359-6454(01)00338-XSuche in Google Scholar
[37] C. Herring, in: R. Gomer, C.S. Smith (Eds.), Structure and Properties of Solid Surfaces, (University of Chicago, 1953), chap. 1, pp. 5–81.Suche in Google Scholar
[38] M. Hillert: Phase Equilibria, Phase Diagrams, and Phase Transformations: Their Thermodynamic Basis (Cambridge Univ. Press, New York, 1998), chap. 14.6.Suche in Google Scholar
[39] D. Wolf, K.L. Merkle, in: D. Wolf, S. Yip (Eds.), Materials Interfaces: Atomic-Level Structure and Properties, (Chapman & Hall, London, 1992), chap. 3, pp. 87–150.Suche in Google Scholar
[40] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen: Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988), chap. III, V.Suche in Google Scholar
[41] C.E. Krill, R. Klein, S. Janes, R. Birringer: Mater. Sci. Forum 179–181 (1995) 443.10.4028/www.scientific.net/MSF.179-181.443Suche in Google Scholar
[42] H. Ehrhardt: Ph.D. thesis, Universität des Saarlandes (1998).Suche in Google Scholar
[43] E. Shapiro, R. Würschum, H.-E. Schaefer, H. Ehrhardt, C.E. Krill III, R. Birringer: Mater. Sci. Forum 343–346 (2000) 726.10.4028/www.scientific.net/MSF.343-346.726Suche in Google Scholar
[44] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.): Binary Alloy Phase Diagrams (American Society for Metals, Materials Park, OH, 1990), vol. 3, pp. 3071–3072.Suche in Google Scholar
[45] C.C. Koch: Mater. Sci. Forum 88–90 (1992) 243.10.4028/www.scientific.net/MSF.88-90.243Suche in Google Scholar
[46] B.D. Cullity: Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978), 2nd ed., pp. 363–367.Suche in Google Scholar
[47] C.E. Krill, R. Birringer: Philos. Mag. A 77 (1998) 621.10.1080/01418619808224072Suche in Google Scholar
[48] H.P. Klug, L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974), 2nd ed., chap. 9.Suche in Google Scholar
[49] W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, Oxford, 1967), vol. 2, pp. 1180–1181.Suche in Google Scholar
[50] M.S. Chandrasekharaiah, M.J. Stickney, K.A. Gingerich, J.A. Speed: J. Alloy Phase Diag. 6 (1990) 59.Suche in Google Scholar
[51] A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu: Acta mater. 47 (1999) 2143.10.1016/S1359-6454(99)00079-8Suche in Google Scholar
[52] E.E. Underwood: Quantitative Stereology (Addison-Wesley, Reading, MA, 1970), chap. 4.Suche in Google Scholar
[53] A.R. Miedema: Z. Metallkd. 69 (1978) 287.10.1515/ijmr-1978-690501Suche in Google Scholar
[54] S.M. Allen, J.W. Cahn: Acta metall. 27 (1979) 1085.10.1016/0001-6160(79)90196-2Suche in Google Scholar
© 2005 Carl Hanser Verlag, München
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermodynamics of grain boundary adsorption in binary systems with limited solubility
- Microstructural characteristics of 3-d networks
- On the three-dimensional twin-limited microstructure
- Grain growth kinetics in 2D polycrystals: impact of triple junctions
- Thermal stability of polycrystalline nanowires
- Conservative motion of parent-martensite interfaces
- Enthalpy – entropy compensation effect in grain boundary phenomena
- Thermodynamic stabilization of nanocrystallinity
- On the relation between the anisotropies of grain boundary segregation and grain boundary energy
- Influence of faceting-roughening on triple-junction migration in zinc
- The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
- Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
- Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
- Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
- Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
- Room-temperature grain boundary diffusion data measured from historical artifacts
- Solid state infiltration of porous steel with aluminium by the forcefill process
- A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
- Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
- High-pressure effect on grain boundary wetting in aluminium bicrystals
- Grain boundary segregation and fracture
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen
Artikel in diesem Heft
- Frontmatter
- Editorial
- Editorial
- Articles Basic
- Thermodynamics of grain boundary adsorption in binary systems with limited solubility
- Microstructural characteristics of 3-d networks
- On the three-dimensional twin-limited microstructure
- Grain growth kinetics in 2D polycrystals: impact of triple junctions
- Thermal stability of polycrystalline nanowires
- Conservative motion of parent-martensite interfaces
- Enthalpy – entropy compensation effect in grain boundary phenomena
- Thermodynamic stabilization of nanocrystallinity
- On the relation between the anisotropies of grain boundary segregation and grain boundary energy
- Influence of faceting-roughening on triple-junction migration in zinc
- The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
- Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
- Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
- Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
- Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
- Room-temperature grain boundary diffusion data measured from historical artifacts
- Solid state infiltration of porous steel with aluminium by the forcefill process
- A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
- Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
- High-pressure effect on grain boundary wetting in aluminium bicrystals
- Grain boundary segregation and fracture
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Conferences/Konferenzen