Startseite Enthalpy – entropy compensation effect in grain boundary phenomena
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enthalpy – entropy compensation effect in grain boundary phenomena

  • Pavel Lejček EMAIL logo
Veröffentlicht/Copyright: 3. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The existence of the so-called “enthalpy – entropy compensation effect” as an inherent property of a system is proven on the basis of a pure thermodynamic analysis. The compensation effect is documented for the example of grain boundary segregation and migration. It is shown that the changes of the values of characteristic enthalpy and entropy that fulfil the compensation effect are caused by the changes of grain boundary energy via the changes of grain boundary structure and system chemistry: Despite of the nature of such changes, a single linear dependence between the enthalpy and entropy should exist under the same mechanism of the process.


Prof. Dr. Pavel Lejček Institute of Physics, Academy of Sciences of the Czech Republic Na Slovance 2, 18221 Praha 8, Czech Republic Tel.: +420 266 052 167 Fax: +420 286 890 527

Dedicated to Professor Dr. Lasar Shvindlerman on the occasion of his 70th birthday


  1. The supports of the Inst. Res. Plan AV0Z 10100520 and the project PROGRESS (Ministry of Industry and Trade of the Czech Republic) FF–P2/053 are gratefully acknowledged.

References

[1] F.H. Constable: Proc. Roy. Soc. London A 108 (1925) 355.10.1098/rspa.1925.0081Suche in Google Scholar

[2] Y.L. Maksimova, B.B. Straumal, V.Y. Fradkov, L.S. Shvindlerman: Phys. Met. Metall. 56 (1983) 133.Suche in Google Scholar

[3] L. Liu, Q.-X. Guo: Chem. Rev. 101 (2001) 673.10.1021/cr990416zSuche in Google Scholar

[4] J. Šesták: Heat, Thermal Analysis and Society, Nucleus HK, Hradec Králové (2004).Suche in Google Scholar

[5] A.K. Galwey: Thermochim. Acta 413 (2004) 139.10.1016/j.tca.2003.10.013Suche in Google Scholar

[6] G. McBane: J. Chem. Ed. 75 (1998) 919.10.1021/ed075p919Suche in Google Scholar

[7] G. Gottstein, L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, CRC Press, Boca Raton (1999).Suche in Google Scholar

[8] E.D. Hondros, M.P. Seah, S. Hofmann, P. Lejček, in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, 4th ed., North – Holland, Amsterdam (1996) 1201.10.1016/B978-044489875-3/50018-1Suche in Google Scholar

[9] L. Rubinovich, M. Polak: Eur. Phys. J. B 22 (2001) 267.10.1088/0143-0807/22/4/301Suche in Google Scholar

[10] P. Lejček, S. Hofmann, V. Paidar: Acta Mater. 51 (2003) 3951.10.1016/S1359-6454(03)00219-2Suche in Google Scholar

[11] M. Guttmann, D. McLean, in: W.C. Johnson, J.M. Blakely (Eds.), Interfacial Segregation, ASM, Metals Park OH (1979) 261.Suche in Google Scholar

[12] P. Lejček, S. Hofmann: Interface Sci. 9 (2001) 221.10.1023/A:1015150526374Suche in Google Scholar

[13] J.D. Rittner, D.N. Seidman: Acta Mater. 45 (1997) 3191.10.1016/S1359-6454(97)00002-5Suche in Google Scholar

[14] M. Furtkamp, P. Lejček, S. Tsurekawa: Interface Sci. 6 (1997) 59.10.1023/A:1008660402916Suche in Google Scholar

[15] G. Gottstein, L.S. Shvindlerman: Interface Sci. 6 (1998) 265.10.1023/A:1008649619917Suche in Google Scholar

Received: 2005-04-13
Accepted: 2005-07-08
Published Online: 2022-02-03

© 2005 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Editorial
  4. Articles Basic
  5. Thermodynamics of grain boundary adsorption in binary systems with limited solubility
  6. Microstructural characteristics of 3-d networks
  7. On the three-dimensional twin-limited microstructure
  8. Grain growth kinetics in 2D polycrystals: impact of triple junctions
  9. Thermal stability of polycrystalline nanowires
  10. Conservative motion of parent-martensite interfaces
  11. Enthalpy – entropy compensation effect in grain boundary phenomena
  12. Thermodynamic stabilization of nanocrystallinity
  13. On the relation between the anisotropies of grain boundary segregation and grain boundary energy
  14. Influence of faceting-roughening on triple-junction migration in zinc
  15. The influence of triple junction kinetics on the evolution of polycrystalline materials during normal grain growth: New evidence from in-situ experiments using columnar Al foil
  16. Grain boundary dynamics and selective grain growth in non-ferromagnetic metals in high magnetic fields
  17. Grain boundary mobility under a stored-energy driving force: a comparison to curvature-driven boundary migration
  18. Diffusional behavior of nanoscale lead inclusions in crystalline aluminum
  19. Quantitative experiments on the transition between linear to non-linear segregation of Ag in Cu bicrystals studied by radiotracer grain boundary diffusion
  20. Room-temperature grain boundary diffusion data measured from historical artifacts
  21. Solid state infiltration of porous steel with aluminium by the forcefill process
  22. A mechanism of plane matching boundary-assisted α/γ phase transformation in Fe–Cr alloy based on in-situ observations
  23. Fast penetration of Ga in Al: liquid metal embrittlement near the threshold of grain boundary wetting
  24. High-pressure effect on grain boundary wetting in aluminium bicrystals
  25. Grain boundary segregation and fracture
  26. Notifications/Mitteilungen
  27. Personal/Personelles
  28. Press/Presse
  29. Conferences/Konferenzen
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2005-0195/pdf
Button zum nach oben scrollen